normal.py 11.0 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import numpy as np
17
import paddle
18
from paddle.distribution import distribution
19
from paddle.fluid.data_feeder import check_type, convert_dtype
20
from paddle.fluid.framework import _non_static_mode
21 22 23 24 25 26 27 28
from paddle.fluid.layers import (
    elementwise_add,
    elementwise_div,
    elementwise_sub,
    nn,
    tensor,
)

29
from collections.abc import Iterable
30 31


32
class Normal(distribution.Distribution):
33 34 35 36 37 38 39 40
    r"""The Normal distribution with location `loc` and `scale` parameters.

    Mathematical details

    The probability density function (pdf) is

    .. math::

41
        pdf(x; \mu, \sigma) = \frac{1}{Z}e^{\frac {-0.5 (x - \mu)^2}  {\sigma^2} }
42 43 44 45 46 47 48 49 50 51 52 53

    .. math::

        Z = (2 \pi \sigma^2)^{0.5}

    In the above equation:

    * :math:`loc = \mu`: is the mean.
    * :math:`scale = \sigma`: is the std.
    * :math:`Z`: is the normalization constant.

    Args:
54 55
        loc(int|float|list|tuple|numpy.ndarray|Tensor): The mean of normal distribution.The data type is float32 and float64.
        scale(int|float|list|tuple|numpy.ndarray|Tensor): The std of normal distribution.The data type is float32 and float64.
56 57 58 59
        name(str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Examples:
        .. code-block:: python
60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
            import paddle
            from paddle.distribution import Normal

            # Define a single scalar Normal distribution.
            dist = Normal(loc=0., scale=3.)
            # Define a batch of two scalar valued Normals.
            # The first has mean 1 and standard deviation 11, the second 2 and 22.
            dist = Normal(loc=[1., 2.], scale=[11., 22.])
            # Get 3 samples, returning a 3 x 2 tensor.
            dist.sample([3])

            # Define a batch of two scalar valued Normals.
            # Both have mean 1, but different standard deviations.
            dist = Normal(loc=1., scale=[11., 22.])

            # Complete example
            value_tensor = paddle.to_tensor([0.8], dtype="float32")

            normal_a = Normal([0.], [1.])
            normal_b = Normal([0.5], [2.])
            sample = normal_a.sample([2])
            # a random tensor created by normal distribution with shape: [2, 1]
            entropy = normal_a.entropy()
            # [1.4189385] with shape: [1]
            lp = normal_a.log_prob(value_tensor)
            # [-1.2389386] with shape: [1]
            p = normal_a.probs(value_tensor)
            # [0.28969154] with shape: [1]
            kl = normal_a.kl_divergence(normal_b)
            # [0.34939718] with shape: [1]
91 92 93
    """

    def __init__(self, loc, scale, name=None):
J
Jiabin Yang 已提交
94
        if not _non_static_mode():
95 96 97 98 99 100 101 102 103 104 105 106
            check_type(
                loc,
                'loc',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
            check_type(
                scale,
                'scale',
                (int, float, np.ndarray, tensor.Variable, list, tuple),
                'Normal',
            )
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

        self.batch_size_unknown = False
        self.all_arg_is_float = False
        self.name = name if name is not None else 'Normal'
        self.dtype = 'float32'

        if isinstance(loc, int):
            loc = float(loc)
        if isinstance(scale, int):
            scale = float(scale)

        if self._validate_args(loc, scale):
            self.batch_size_unknown = True
            self.loc = loc
            self.scale = scale
            self.dtype = convert_dtype(loc.dtype)
        else:
            if isinstance(loc, float) and isinstance(scale, float):
                self.all_arg_is_float = True
126 127 128 129
            if isinstance(loc, np.ndarray) and str(loc.dtype) in [
                'float32',
                'float64',
            ]:
130
                self.dtype = loc.dtype
131 132 133 134
            elif isinstance(scale, np.ndarray) and str(scale.dtype) in [
                'float32',
                'float64',
            ]:
135 136 137 138 139 140
                self.dtype = scale.dtype
            # pylint: disable=unbalanced-tuple-unpacking
            self.loc, self.scale = self._to_tensor(loc, scale)
            if self.dtype != convert_dtype(self.loc.dtype):
                self.loc = tensor.cast(self.loc, dtype=self.dtype)
                self.scale = tensor.cast(self.scale, dtype=self.dtype)
141
        super().__init__(self.loc.shape)
142

143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161
    @property
    def mean(self):
        """Mean of multinomial distribuion.

        Returns:
            Tensor: mean value.
        """
        return self.loc

    @property
    def variance(self):
        """Variance of lognormal distribution.

        Returns:
            Tensor: variance value.
        """
        return self.scale.pow(2)

    def sample(self, shape=(), seed=0):
162 163 164
        """Generate samples of the specified shape.

        Args:
165
            shape (Sequence[int], optional): Shape of the generated samples.
166
            seed (int): Python integer number.
167 168

        Returns:
169
            Tensor, A tensor with prepended dimensions shape.The data type is float32.
170 171

        """
172 173 174
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

J
Jiabin Yang 已提交
175
        if not _non_static_mode():
176 177
            check_type(seed, 'seed', (int), 'sample')

178
        shape = list(shape)
179 180 181 182 183 184
        batch_shape = list((self.loc + self.scale).shape)
        name = self.name + '_sample'

        if self.batch_size_unknown:
            output_shape = shape + batch_shape
            zero_tmp = tensor.fill_constant_batch_size_like(
185 186
                self.loc + self.scale, batch_shape + shape, self.dtype, 0.0
            )
187 188
            zero_tmp_reshape = nn.reshape(zero_tmp, output_shape)
            zero_tmp_shape = nn.shape(zero_tmp_reshape)
189 190 191
            normal_random_tmp = nn.gaussian_random(
                zero_tmp_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            )
192 193 194 195 196
            output = normal_random_tmp * (zero_tmp_reshape + self.scale)
            output = elementwise_add(output, self.loc, name=name)
            return output
        else:
            output_shape = shape + batch_shape
197
            output = nn.gaussian_random(
198 199
                output_shape, mean=0.0, std=1.0, seed=seed, dtype=self.dtype
            ) * (tensor.zeros(output_shape, dtype=self.dtype) + self.scale)
200 201 202 203 204 205
            output = elementwise_add(output, self.loc, name=name)
            if self.all_arg_is_float:
                return nn.reshape(output, shape, name=name)
            else:
                return output

206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
    def rsample(self, shape=()):
        """Generate reparameterized samples of the specified shape.

        Args:
          shape (Sequence[int], optional): Shape of the generated samples.

        Returns:
          Tensor: A tensor with prepended dimensions shape.The data type is float32.

        """
        if not isinstance(shape, Iterable):
            raise TypeError('sample shape must be Iterable object.')

        shape = self._extend_shape(tuple(shape))
        eps = paddle.normal(shape=shape)
221
        return self.loc + eps * self.scale
222

223 224 225 226 227 228 229
    def entropy(self):
        r"""Shannon entropy in nats.

        The entropy is

        .. math::

230
            entropy(\sigma) = 0.5 \log (2 \pi e \sigma^2)
231 232 233 234 235 236

        In the above equation:

        * :math:`scale = \sigma`: is the std.

        Returns:
237
            Tensor, Shannon entropy of normal distribution.The data type is float32.
238 239 240 241

        """
        name = self.name + '_entropy'
        batch_shape = list((self.loc + self.scale).shape)
242 243 244 245 246 247 248 249
        zero_tmp = tensor.fill_constant_batch_size_like(
            self.loc + self.scale, batch_shape, self.dtype, 0.0
        )
        return elementwise_add(
            0.5 + zero_tmp,
            0.5 * math.log(2 * math.pi) + nn.log((self.scale + zero_tmp)),
            name=name,
        )
250 251 252 253 254 255 256 257

    def log_prob(self, value):
        """Log probability density/mass function.

        Args:
          value (Tensor): The input tensor.

        Returns:
258
          Tensor: log probability.The data type is same with :attr:`value` .
259 260 261 262 263 264 265

        """
        name = self.name + '_log_prob'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
        log_scale = nn.log(self.scale)
266 267 268 269 270
        return elementwise_sub(
            -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var),
            log_scale + math.log(math.sqrt(2.0 * math.pi)),
            name=name,
        )
271 272 273 274 275

    def probs(self, value):
        """Probability density/mass function.

        Args:
276
            value (Tensor): The input tensor.
277 278

        Returns:
279
            Tensor, probability. The data type is same with :attr:`value` .
280 281 282 283 284 285

        """
        name = self.name + '_probs'
        value = self._check_values_dtype_in_probs(self.loc, value)

        var = self.scale * self.scale
286
        return elementwise_div(
287
            paddle.exp(
288 289 290 291 292
                -1.0 * ((value - self.loc) * (value - self.loc)) / (2.0 * var)
            ),
            (math.sqrt(2 * math.pi) * self.scale),
            name=name,
        )
293 294 295 296 297 298 299 300

    def kl_divergence(self, other):
        r"""The KL-divergence between two normal distributions.

        The probability density function (pdf) is

        .. math::

301
            KL\_divergence(\mu_0, \sigma_0; \mu_1, \sigma_1) = 0.5 (ratio^2 + (\frac{diff}{\sigma_1})^2 - 1 - 2 \ln {ratio})
302 303 304

        .. math::

305
            ratio = \frac{\sigma_0}{\sigma_1}
306

307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
        .. math::

            diff = \mu_1 - \mu_0

        In the above equation:

        * :math:`loc = \mu_0`: is the mean of current Normal distribution.
        * :math:`scale = \sigma_0`: is the std of current Normal distribution.
        * :math:`loc = \mu_1`: is the mean of other Normal distribution.
        * :math:`scale = \sigma_1`: is the std of other Normal distribution.
        * :math:`ratio`: is the ratio of scales.
        * :math:`diff`: is the difference between means.

        Args:
            other (Normal): instance of Normal.

        Returns:
324
            Tensor, kl-divergence between two normal distributions.The data type is float32.
325 326

        """
J
Jiabin Yang 已提交
327
        if not _non_static_mode():
328 329 330 331
            check_type(other, 'other', Normal, 'kl_divergence')

        name = self.name + '_kl_divergence'
        var_ratio = self.scale / other.scale
332
        var_ratio = var_ratio * var_ratio
333
        t1 = (self.loc - other.loc) / other.scale
334 335 336 337
        t1 = t1 * t1
        return elementwise_add(
            0.5 * var_ratio, 0.5 * (t1 - 1.0 - nn.log(var_ratio)), name=name
        )