operator.h 17.2 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36 37 38 39

namespace paddle {
namespace framework {

40
/// If a variable is a empty variable, that name will be used.
41
constexpr char kEmptyVarName[] = "@EMPTY@";
42 43 44

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
45
constexpr char kTempVarName[] = "@TEMP@";
46 47 48 49

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
50
constexpr char kGradVarSuffix[] = "@GRAD";
51

M
minqiyang 已提交
52 53
constexpr size_t kGradVarSuffixSize = 5U;

54
/// Variables with this suffix are supposed to be filled up with zeros.
55
constexpr char kZeroVarSuffix[] = "@ZERO";
56

C
chengduo 已提交
57 58 59
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
60
// define some kernel priority
61
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
62 63
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

64
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
65 66 67 68 69
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
70 71
}

Q
qiaolongfei 已提交
72
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
73 74
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
75

Q
Qiao Longfei 已提交
76
class OperatorBase;
77
class ExecutionContext;
78

X
Xin Pan 已提交
79 80
class RuntimeContext {
 public:
X
Xin Pan 已提交
81 82
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
83

X
Xin Pan 已提交
84 85 86 87
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
88 89 90 91
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
92
/**
X
Xin Pan 已提交
93
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
94 95 96 97 98 99
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
100 101
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
102

Q
Qiao Longfei 已提交
103 104
  virtual ~OperatorBase() {}

105
  /// Executor will call this interface function to Run an op.
106 107
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
108

T
typhoonzero 已提交
109 110 111
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

112 113 114
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
115

116 117
  virtual bool SupportGPU() const { return false; }

118 119
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
120
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
121 122
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
123 124
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
125 126 127
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
128

Y
Yu Yang 已提交
129 130
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
131

132
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
133
  //! Get a input with argument's name described in `op_proto`
134
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
135
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
136
  const std::vector<std::string>& Inputs(const std::string& name) const;
137
  //! Get all inputs variable names
Q
qijun 已提交
138 139
  std::vector<std::string> InputVars() const;

140
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
141
  //! Get a output with argument's name described in `op_proto`
142
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
143 144
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
145
  const std::vector<std::string>& Outputs(const std::string& name) const;
146
  //! Get all outputs variable names
Y
Yu Yang 已提交
147
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
148

149
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
150
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
151 152
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
153

Q
qiaolongfei 已提交
154
 protected:
Q
Qiao Longfei 已提交
155
  std::string type_;
D
dongzhihong 已提交
156
  // NOTE: in case of OpGrad, inputs_ contains:
157
  // I (Inputs)
D
dongzhihong 已提交
158 159
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
160
  VariableNameMap inputs_;
Y
Yu Yang 已提交
161

D
dongzhihong 已提交
162 163
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
164
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
165
  AttributeMap attrs_;
166 167
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
168 169 170 171

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
172 173
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
174 175
};

176
class ExecutionContext {
Y
Yan Chunwei 已提交
177
 public:
178
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
179 180 181
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
182

Q
qiaolongfei 已提交
183 184 185 186
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
187
  template <typename T>
Y
Yu Yang 已提交
188 189
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
190 191
  }

192
  bool HasInput(const std::string& name) const;
193

194
  bool HasOutput(const std::string& name) const;
195

Y
Yu Yang 已提交
196
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
197
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
198 199
  }

Y
Yu Yang 已提交
200
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
201
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
202 203
  }

X
Xin Pan 已提交
204
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
205

X
Xin Pan 已提交
206
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
207

208 209
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
210 211 212 213
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
214
    std::vector<const Variable*> res;
X
Xin Pan 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
235
    res.reserve(names.size());
236 237
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
238 239
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
240
                   });
Y
Yan Chunwei 已提交
241 242 243
    return res;
  }

X
Xin Pan 已提交
244
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
245
    auto names = op_.Outputs(name);
246
    std::vector<Variable*> res;
247
    res.reserve(names.size());
248 249
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
250 251
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
252
                   });
Y
Yan Chunwei 已提交
253 254 255
    return res;
  }

256 257
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
258
    auto* var = InputVar(name);
259
    return var == nullptr ? nullptr : &var->Get<T>();
260 261 262 263
  }

  template <typename T>
  T* Output(const std::string& name) const {
264
    auto var = OutputVar(name);
265
    return var == nullptr ? nullptr : var->GetMutable<T>();
266 267
  }

X
Xin Pan 已提交
268
  template <typename T>
X
clean  
Xin Pan 已提交
269 270
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
271 272 273 274
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
275 276
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
277 278 279
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
280
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
281

X
clean  
Xin Pan 已提交
282
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
283

284 285
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
318 319 320 321
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
322
                   [&](const std::string& sub_name) -> const T* {
323
                     auto var = scope_.FindVar(sub_name);
324
                     return var == nullptr ? nullptr : &var->Get<T>();
325 326 327 328 329
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
330
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
331
    auto names = op_.Outputs(name);
332
    std::vector<T*> res;
333 334
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
335
                   [&](const std::string& sub_name) -> T* {
336
                     auto var = scope_.FindVar(sub_name);
337
                     return var == nullptr ? nullptr : var->GetMutable<T>();
338 339 340 341
                   });
    return res;
  }

342
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
343

Q
QI JUN 已提交
344 345 346 347 348
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

349
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
350
    return device_context_;
Q
qijun 已提交
351
  }
Q
qijun 已提交
352

Q
QI JUN 已提交
353 354 355 356 357 358 359 360
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
361
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
362 363 364
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
365

D
dzhwinter 已提交
366
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
367 368 369 370
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
    PADDLE_ENFORCE_EQ(allocation_ptr->size(),
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

395
 private:
396 397
  const OperatorBase& op_;
  const Scope& scope_;
398
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
399
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
400 401
};

402 403 404
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
405
template <>
X
clean  
Xin Pan 已提交
406
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
407 408
    const std::string& name) const;

409 410 411 412
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
413 414 415 416
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

417 418 419
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
420
template <>
X
clean  
Xin Pan 已提交
421
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
422

423 424 425 426
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
427
class OpKernelBase {
Q
qijun 已提交
428
 public:
Q
qijun 已提交
429
  /**
430
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
431 432
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
433
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
434 435
   */

436
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
437

Y
Yu Yang 已提交
438 439 440 441 442 443 444
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
445 446
};

Y
Yu Yang 已提交
447 448
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
449
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
450
  using OpKernelMap =
Y
yuyang18 已提交
451
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
452

Y
Yu Yang 已提交
453 454
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
455 456
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
457 458 459 460
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
461
  }
Y
Yan Chunwei 已提交
462

463
  bool SupportGPU() const override {
Y
Yu Yang 已提交
464 465 466 467 468
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
469 470
  }

471 472 473
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
474

X
Xin Pan 已提交
475 476
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
477

478
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
479 480

 protected:
481 482 483
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
484 485

 private:
486
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
487
  // same.
488
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
489
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
490 491 492 493 494 495 496

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
497 498 499 500
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
501 502 503 504

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
505 506
};

Y
Yu Yang 已提交
507 508
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
509 510
}  // namespace framework
}  // namespace paddle