# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. __all__ = ['TracedLayer'] from .base import program_desc_tracing_guard, switch_to_static_graph from .layers import Layer from paddle.fluid import core from paddle.fluid.framework import Program, Block, Variable, _dygraph_tracer, dygraph_only, _dygraph_guard, _current_expected_place, in_dygraph_mode from paddle.fluid.executor import Executor, scope_guard from paddle.fluid.compiler import CompiledProgram import paddle.fluid.io as fluid_io def create_program_from_desc(program_desc): program = Program() program.desc = program_desc program.blocks = [Block(program, 0)] program._sync_with_cpp() return program def _extract_vars(inputs, result_list): if isinstance(inputs, Variable): result_list.append(inputs) if isinstance(inputs, (list, tuple)): for var in inputs: _extract_vars(var, result_list) def extract_vars(inputs): result_list = [] _extract_vars(inputs, result_list) return result_list @dygraph_only def _trace(layer, inputs, feed_prefix='feed_', fetch_prefix='fetch_', tmp_prefix='t_'): assert isinstance(layer, Layer) if not isinstance(inputs, (list, tuple)): inputs = [inputs] tracer = _dygraph_tracer()._get_program_desc_tracer() var_list = extract_vars(inputs) with program_desc_tracing_guard(True): original_outputs = layer(*inputs) if not isinstance(original_outputs, (list, tuple)): outputs = [original_outputs] else: outputs = original_outputs out_vars = [var for var in outputs] program_desc, feed_names, fetch_names = tracer.create_program_desc( var_list, feed_prefix, out_vars, fetch_prefix, tmp_prefix) tracer.reset() with _dygraph_guard(None): program = create_program_from_desc(program_desc) return original_outputs, program, feed_names, fetch_names class TracedLayer(object): """ TracedLayer is a callable object which is converted from dygraph model. Inside TracedLayer, the dygraph model is converted into a static graph model, and it would run the static graph model using :code:`Executor` and :code:`CompiledProgram` . The static graph model would share parameters with the dygraph model. All TracedLayer objects should not be created by constructor and should be created by static method :code:`TracedLayer.trace(layer, inputs)` . The TracedLayer can only be used to convert the data-independent dygraph model into the static graph model, which means the dygraph model should be independent with the tensor data and shape. """ def __init__(self, program, parameters, feed_names, fetch_names): self._program = program self._feed_names = feed_names self._fetch_names = fetch_names self._place = _current_expected_place() self._scope = core.Scope() for p in parameters: src_tensor = p.value().get_tensor() dst_tensor = self._scope.var(p.name).get_tensor() dst_tensor._share_data_with(src_tensor) self._exe = Executor(self._place) self._compiled_program = None self._build_strategy = None self._exec_strategy = None @property def program(self): return self._program def _switch(self, is_test=True): for block_id in range(self._program.num_blocks): block = self._program.block(block_id) for op in block.ops: if op.has_attr("is_test"): op._set_attr("is_test", is_test) @staticmethod @dygraph_only def trace(layer, inputs): """ This method is the only allowed method to create TracedLayer object. It would call the :code:`layer(*inputs)` method to run the dygraph model and convert it into a static graph model. Args: layer (paddle.fluid.dygraph.Layer): the layer object to be traced. inputs (list(Variable)): the input variables of the layer object. Returns: A tuple of 2 items, whose the first item is the output of :code:`layer(*inputs)` , and the second item is the created TracedLayer object. Examples: .. code-block:: python: import paddle.fluid as fluid from paddle.fluid.dygraph import FC, to_variable, TracedLayer import paddle.fluid.dygraph.jit as jit import numpy as np class ExampleLayer(fluid.dygraph.Layer): def __init__(self, name_scope): super(ExampleLayer, self).__init__(name_scope) self._fc = FC(self.full_name(), 10) def forward(self, input): return self._fc(input) with fluid.dygraph.guard(): layer = ExampleLayer("example_layer") in_np = np.random.random([2, 3]).astype('float32') in_var = to_variable(in_np) out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var]) out_static_graph = static_layer([in_var]) """ outs, prog, feed, fetch = _trace(layer, inputs) traced = TracedLayer(prog, layer.parameters(), feed, fetch) return outs, traced def set_strategy(self, build_strategy=None, exec_strategy=None): """ Set the strategies when running static graph model. Args: build_strategy (BuildStrategy, optional): build strategy of :code:`CompiledProgram` inside TracedLayer. Default None. exec_strategy (ExecutionStrategy, optional): execution strategy of :code:`CompiledProgram` inside TracedLayer. Default None. Returns: None Examples: .. code-block:: python: import paddle.fluid as fluid from paddle.fluid.dygraph import FC, to_variable, TracedLayer import paddle.fluid.dygraph.jit as jit import numpy as np class ExampleLayer(fluid.dygraph.Layer): def __init__(self, name_scope): super(ExampleLayer, self).__init__(name_scope) self._fc = FC(self.full_name(), 10) def forward(self, input): return self._fc(input) with fluid.dygraph.guard(): layer = ExampleLayer("example_layer") in_np = np.random.random([2, 3]).astype('float32') in_var = to_variable(in_np) out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var]) build_strategy = fluid.BuildStrategy() build_strategy.enable_inplace = True exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 2 static_layer.set_strategy(build_strategy=build_strategy, exec_strategy=exec_strategy) out_static_graph = static_layer([in_var]) """ assert self._compiled_program is None, "Cannot set strategy after run" self._build_strategy = build_strategy self._exec_strategy = exec_strategy @switch_to_static_graph def _compile(self): self._compiled_program = CompiledProgram( self._program).with_data_parallel( build_strategy=self._build_strategy, exec_strategy=self._exec_strategy, places=self._place) def _build_feed(self, inputs): assert isinstance(inputs, (list, tuple)), \ "Inputs should be a list or tuple of variables" assert len(inputs) == len(self._feed_names) feed_dict = {} if in_dygraph_mode(): for x, name in zip(inputs, self._feed_names): feed_dict[name] = x.value().get_tensor() else: for x, name in zip(inputs, self._feed_names): feed_dict[name] = x return feed_dict @switch_to_static_graph def _run(self, feed): return self._exe.run(self._compiled_program, feed=feed, fetch_list=self._fetch_names) def __call__(self, inputs): with scope_guard(self._scope): if self._compiled_program is None: self._compile() return self._run(self._build_feed(inputs)) @switch_to_static_graph def save_inference_model(self, dirname, feed=None, fetch=None): """ Save the TracedLayer to an model for inference. The saved inference model can be loaded by C++ inference APIs. Args: dirname (str): the directory to save the inference model. feed (list[int], optional): the input variable indices of the saved inference model. If None, all input variables of the TracedLayer object would be the inputs of the saved inference model. Default None. fetch (list[int], optional): the output variable indices of the saved inference model. If None, all output variables of the TracedLayer object would be the outputs of the saved inference model. Default None. Returns: The fetch variables' name list Return Type: list(str) Examples: .. code-block:: python: import paddle.fluid as fluid from paddle.fluid.dygraph import FC, to_variable, TracedLayer import paddle.fluid.dygraph.jit as jit import numpy as np class ExampleLayer(fluid.dygraph.Layer): def __init__(self, name_scope): super(ExampleLayer, self).__init__(name_scope) self._fc = FC(self.full_name(), 10) def forward(self, input): return self._fc(input) with fluid.dygraph.guard(): layer = ExampleLayer("example_layer") in_np = np.random.random([2, 3]).astype('float32') in_var = to_variable(in_np) out_dygraph, static_layer = TracedLayer.trace(layer, inputs=[in_var]) static_layer.save_inference_model('./saved_infer_model') """ def get_feed_fetch(all_vars, partial_vars): if partial_vars is None: return all_vars return [all_vars[idx] for idx in partial_vars] with scope_guard(self._scope): feeded_var_names = get_feed_fetch(self._feed_names, feed) target_var_names = get_feed_fetch(self._fetch_names, fetch) target_vars = [] for name in target_var_names: target_var = self._program.global_block().vars.get(name, None) assert target_var is not None, "{} cannot be found".format(name) target_vars.append(target_var) return fluid_io.save_inference_model( dirname=dirname, feeded_var_names=feeded_var_names, target_vars=target_vars, executor=self._exe, main_program=self._program.clone())