grid_sampler_op.cc 7.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include <memory>
16
#include <string>
17

18
#include "paddle/fluid/framework/infershape_utils.h"
D
dengkaipeng 已提交
19
#include "paddle/fluid/framework/op_registry.h"
20
#include "paddle/fluid/framework/op_version_registry.h"
21
#include "paddle/fluid/platform/device/gpu/gpu_dnn.h"
22 23 24
#include "paddle/phi/core/infermeta_utils.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
D
dengkaipeng 已提交
25 26 27 28

namespace paddle {
namespace operators {

29
using Tensor = phi::DenseTensor;
D
dengkaipeng 已提交
30 31

class GridSampleOp : public framework::OperatorWithKernel {
32 33 34 35 36 37
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
38 39
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace());
40
  }
D
dengkaipeng 已提交
41 42 43
};

class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
44 45 46 47
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input data of GridSampleOp, "
48 49
             "This is a 4-D tensor with shape of [N, C, H, W] or"
             "        a 5-D tensot with shape of [N, C, D, H, W]");
50 51 52 53
    AddInput(
        "Grid",
        "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
        "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
54 55 56 57 58 59 60
        "of x and y coordinates with shape [N, H, W] in last dimension or "
        "a 5-D tensor with shape of [N, D, H, W, 3] is the concatenation "
        "of depth, x and y coordinates with shape [N, D, H, W] in last "
        "dimension ");
    AddOutput("Output",
              "(Tensor) Output tensor with shape [N, C, H, W] or shape [N,C, "
              "D, H ,W]");
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77
    AddAttr<bool>(
        "align_corners",
        "(bool, default true) If align_corners is true, it will project"
        "-1 and 1 to the centers of the corner pixels. Otherwise, it will "
        "project"
        "-1 and 1 to the image edges.")
        .SetDefault(true);

    AddAttr<std::string>(
        "mode",
        "(bool, default true) The interpolation method which can be 'bilinear'"
        " or 'nearest'.")
        .SetDefault("bilinear");

    AddAttr<std::string>(
        "padding_mode",
        "(bool, default true) The padding method used when source"
78
        "index is out of input images. It can be 'zeros', 'reflection' and "
79 80 81
        "'border'.")
        .SetDefault("zeros");

82
    AddComment(R"DOC(
83
      This operation samples input X by using bilinear or nearest interpolation based on
T
tianshuo78520a 已提交
84
      flow field grid, which is usually generated by affine_grid. The grid of
85 86 87 88
      shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
      with shape [N, H, W] each, where grid_x is indexing the 4th dimension
      (in width dimension) of input data x and grid_y is indexing the 3rd
      dimension (in height dimension), finally results is the bilinear
89
      interpolation value or nearest value of 4 nearest corner points.
90

91
      For bilinear interpolation mode:
92 93 94 95 96 97 98
      Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

      Step 2:
99
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
        interpolate point value by 4 nearest points.

          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn

        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord

        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side

        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value

        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
        )DOC");
130
  }
D
dengkaipeng 已提交
131 132 133
};

class GridSampleOpGrad : public framework::OperatorWithKernel {
134
 public:
D
dengkaipeng 已提交
135 136
  using framework::OperatorWithKernel::OperatorWithKernel;

137 138 139
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
140 141
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
    return framework::OpKernelType(data_type, ctx.GetPlace());
142
  }
D
dengkaipeng 已提交
143 144
};

H
hong 已提交
145 146
template <typename T>
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
147
 public:
H
hong 已提交
148
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
149 150

 protected:
151
  void Apply(GradOpPtr<T> op) const override {
152
    op->SetType("grid_sampler_grad");
H
hong 已提交
153 154 155
    op->SetInput("X", this->Input("X"));
    op->SetInput("Grid", this->Input("Grid"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
156

H
hong 已提交
157
    op->SetAttrMap(this->Attrs());
158

H
hong 已提交
159 160
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
161
  }
D
dengkaipeng 已提交
162 163
};

164 165
}  // namespace operators
}  // namespace paddle
D
dengkaipeng 已提交
166 167

namespace ops = paddle::operators;
168 169
DECLARE_INFER_SHAPE_FUNCTOR(grid_sampler,
                            GridSamplerInferShapeFunctor,
170
                            PD_INFER_META(phi::GridSampleBaseInferMeta));
171 172 173
REGISTER_OPERATOR(grid_sampler,
                  ops::GridSampleOp,
                  ops::GridSampleOpMaker,
H
hong 已提交
174
                  ops::GridSampleGradMaker<paddle::framework::OpDesc>,
175 176
                  ops::GridSampleGradMaker<paddle::imperative::OpBase>,
                  GridSamplerInferShapeFunctor);
177 178
DECLARE_INFER_SHAPE_FUNCTOR(grid_sampler_grad,
                            GridSamplerGradInferShapeFunctor,
179
                            PD_INFER_META(phi::GeneralBinaryGradInferMeta));
180 181
REGISTER_OPERATOR(grid_sampler_grad,
                  ops::GridSampleOpGrad,
182
                  GridSamplerGradInferShapeFunctor);
D
dengkaipeng 已提交
183

184 185 186 187 188 189 190
REGISTER_OP_VERSION(grid_sampler)
    .AddCheckpoint(
        R"ROC(
      Upgrade grid_sampler add a new attribute [mode].
    )ROC",
        paddle::framework::compatible::OpVersionDesc().NewAttr(
            "mode", "In order to specify interpolation mode", "bilinear"));