grid_sampler_op.cc 8.7 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dengkaipeng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/operators/grid_sampler_op.h"
16
#include <memory>
D
dengkaipeng 已提交
17 18 19 20 21 22 23 24 25 26 27
#include "paddle/fluid/framework/op_registry.h"
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/cudnn_helper.h"
#endif

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;

class GridSampleOp : public framework::OperatorWithKernel {
28 29 30
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
K
Kaipeng Deng 已提交
31 32 33
    OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GridSampler");
    OP_INOUT_CHECK(ctx->HasInput("Grid"), "Input", "Grid", "GridSampler");
    OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "GridSampler");
34 35 36

    auto x_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
37 38 39 40 41 42 43 44 45 46
    PADDLE_ENFORCE_EQ(x_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(X) of GridSampleOp should be 4-D Tensor, but "
                          "received X dimension size(%d)",
                          x_dims.size()));
    PADDLE_ENFORCE_EQ(grid_dims.size(), 4,
                      platform::errors::InvalidArgument(
                          "Input(Grid) of GridSampleOp should be 4-D Tensor, "
                          "but received X dimension size(%d)",
                          grid_dims.size()));
47
    if (ctx->IsRuntime() || grid_dims[3] > 0) {
48 49 50 51 52
      PADDLE_ENFORCE_EQ(
          grid_dims[3], 2,
          platform::errors::InvalidArgument(
              "Input(Grid) dimension[3] should be 2, but received %d",
              grid_dims[3]));
53
    }
54
    if (ctx->IsRuntime()) {
55 56 57 58 59 60
      PADDLE_ENFORCE_EQ(
          grid_dims[0], x_dims[0],
          platform::errors::InvalidArgument(
              "Input(X) and Input(Grid) dimension[0] should be equal, but "
              "received X dimension[0](%d) != Grid dimension[0](%d)",
              x_dims[0], grid_dims[0]));
61 62
      PADDLE_ENFORCE_EQ(
          grid_dims[1], x_dims[2],
63 64 65 66
          platform::errors::InvalidArgument(
              "Input(X) dims[2] and Input(Grid) dims[1] should be equal, but "
              "received X dimension[2](%d) != Grid dimension[1](%d)",
              x_dims[2], grid_dims[1]));
67 68
      PADDLE_ENFORCE_EQ(
          grid_dims[2], x_dims[3],
69 70 71 72
          platform::errors::InvalidArgument(
              "Input(X) dims[3] and Input(Grid) dims[2] should be equal, but "
              "received X dimension[3](%d) != Grid dimension[2](%d)",
              x_dims[3], grid_dims[2]));
73
    }
74 75 76 77 78 79 80 81 82

    ctx->SetOutputDim("Output", x_dims);
    ctx->ShareLoD("X", "Output");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
D
dengkaipeng 已提交
83
#ifdef PADDLE_WITH_CUDA
84 85
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
86
    }
87
#endif
88 89 90
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
91
  }
D
dengkaipeng 已提交
92 93 94
};

class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
95 96 97 98 99 100 101 102 103
 public:
  void Make() override {
    AddInput("X",
             "(Tensor) The input data of GridSampleOp, "
             "This is a 4-D tensor with shape of [N, C, H, W]");
    AddInput(
        "Grid",
        "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
        "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
T
tianshuo78520a 已提交
104
        "of x and y coordinates with shape [N, H, W] in last dimension");
105 106 107 108 109 110 111 112
    AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
    AddAttr<bool>(
        "use_cudnn",
        "(bool, default true) Only used in cudnn kernel, need install cudnn")
        .SetDefault(true);

    AddComment(R"DOC(
      This operation samples input X by using bilinear interpolation based on 
T
tianshuo78520a 已提交
113
      flow field grid, which is usually generated by affine_grid. The grid of
114 115
      shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
      with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
T
tianshuo78520a 已提交
116 117
      (in width dimension) of input data x and grid_y is indexing the 3rd 
      dimension (in height dimension), finally results is the bilinear 
118
      interpolation value of 4 nearest corner points.
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

      Step 1:
        Get (x, y) grid coordinates and scale to [0, H-1/W-1].

        grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
        grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)

      Step 2:
        Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
        interpolate point value by 4 nearest points.

          wn ------- y_n ------- en
          |           |           |
          |          d_n          |
          |           |           |
         x_w --d_w-- grid--d_e-- x_e
          |           |           |
          |          d_s          |
          |           |           |
          ws ------- y_s ------- wn

        x_w = floor(x)              // west side x coord
        x_e = x_w + 1               // east side x coord
        y_n = floor(y)              // north side y coord
        y_s = y_s + 1               // south side y coord

        d_w = grid_x - x_w          // distance to west side
        d_e = x_e - grid_x          // distance to east side
        d_n = grid_y - y_n          // distance to north side
        d_s = y_s - grid_y          // distance to south side

        wn = X[:, :, y_n, x_w]      // north-west point value
        en = X[:, :, y_n, x_e]      // north-east point value
        ws = X[:, :, y_s, x_w]      // south-east point value
        es = X[:, :, y_s, x_w]      // north-east point value

        output = wn * d_e * d_s + en * d_w * d_s
               + ws * d_e * d_n + es * d_w * d_n
        )DOC");
158
  }
D
dengkaipeng 已提交
159 160 161
};

class GridSampleOpGrad : public framework::OperatorWithKernel {
162
 public:
D
dengkaipeng 已提交
163 164
  using framework::OperatorWithKernel::OperatorWithKernel;
  void InferShape(framework::InferShapeContext* ctx) const override {
165 166 167 168 169 170 171 172
    auto input_dims = ctx->GetInputDim("X");
    auto grid_dims = ctx->GetInputDim("Grid");
    if (ctx->HasOutput(framework::GradVarName("X"))) {
      ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
    }
    if (ctx->HasOutput(framework::GradVarName("Grid"))) {
      ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims);
    }
D
dengkaipeng 已提交
173 174
  }

175 176 177 178
 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    framework::LibraryType library_{framework::LibraryType::kPlain};
D
dengkaipeng 已提交
179
#ifdef PADDLE_WITH_CUDA
180 181
    if (platform::CanCUDNNBeUsed(ctx)) {
      library_ = framework::LibraryType::kCUDNN;
D
dengkaipeng 已提交
182
    }
183
#endif
184 185 186
    return framework::OpKernelType(
        OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
        framework::DataLayout::kAnyLayout, library_);
187
  }
D
dengkaipeng 已提交
188 189
};

H
hong 已提交
190 191
template <typename T>
class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
192
 public:
H
hong 已提交
193
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
194 195

 protected:
196
  void Apply(GradOpPtr<T> op) const override {
197
    op->SetType("grid_sampler_grad");
H
hong 已提交
198 199 200
    op->SetInput("X", this->Input("X"));
    op->SetInput("Grid", this->Input("Grid"));
    op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
201

H
hong 已提交
202
    op->SetAttrMap(this->Attrs());
203

H
hong 已提交
204 205
    op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
206
  }
D
dengkaipeng 已提交
207 208
};

209 210
}  // namespace operators
}  // namespace paddle
D
dengkaipeng 已提交
211 212 213

namespace ops = paddle::operators;
REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
H
hong 已提交
214 215
                  ops::GridSampleGradMaker<paddle::framework::OpDesc>,
                  ops::GridSampleGradMaker<paddle::imperative::OpBase>);
D
dengkaipeng 已提交
216 217 218 219 220 221 222 223 224 225
REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);

REGISTER_OP_CPU_KERNEL(
    grid_sampler,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    grid_sampler_grad,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
    ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);