test_sparse_utils_op.py 20.2 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import unittest
import numpy as np
import paddle
Z
zhangkaihuo 已提交
19
from paddle.incubate import sparse
20
import paddle.fluid as fluid
21
import paddle.fluid.core as core
22 23
from paddle.fluid.framework import _test_eager_guard

24 25
devices = ['cpu', 'gpu']

26

27
class TestSparseCreate(unittest.TestCase):
28

29
    def test_create_coo_by_tensor(self):
30
        with _test_eager_guard():
31 32
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1, 2, 3, 4, 5]
33
            dense_shape = [3, 4]
34 35
            dense_indices = paddle.to_tensor(indices)
            dense_elements = paddle.to_tensor(values, dtype='float32')
36 37 38 39
            coo = paddle.incubate.sparse.sparse_coo_tensor(dense_indices,
                                                           dense_elements,
                                                           dense_shape,
                                                           stop_gradient=False)
40
            # test the to_string.py
41 42
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
43

44 45 46 47
    def test_create_coo_by_np(self):
        with _test_eager_guard():
            indices = [[0, 1, 2], [1, 2, 0]]
            values = [1.0, 2.0, 3.0]
48
            dense_shape = [3, 3]
49 50
            coo = paddle.incubate.sparse.sparse_coo_tensor(
                indices, values, dense_shape)
51
            assert np.array_equal(3, coo.nnz())
52 53
            assert np.array_equal(indices, coo.indices().numpy())
            assert np.array_equal(values, coo.values().numpy())
54

55
    def test_create_csr_by_tensor(self):
56
        with _test_eager_guard():
57 58 59
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
60
            dense_shape = [3, 4]
61 62 63
            dense_crows = paddle.to_tensor(crows)
            dense_cols = paddle.to_tensor(cols)
            dense_elements = paddle.to_tensor(values, dtype='float32')
64
            stop_gradient = False
65
            csr = paddle.incubate.sparse.sparse_csr_tensor(
66 67 68 69 70
                dense_crows,
                dense_cols,
                dense_elements,
                dense_shape,
                stop_gradient=stop_gradient)
71

72 73 74 75 76 77
    def test_create_csr_by_np(self):
        with _test_eager_guard():
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
            dense_shape = [3, 4]
78 79
            csr = paddle.incubate.sparse.sparse_csr_tensor(
                crows, cols, values, dense_shape)
80
            # test the to_string.py
81
            assert np.array_equal(5, csr.nnz())
82 83 84
            assert np.array_equal(crows, csr.crows().numpy())
            assert np.array_equal(cols, csr.cols().numpy())
            assert np.array_equal(values, csr.values().numpy())
85 86 87 88 89 90 91

    def test_place(self):
        with _test_eager_guard():
            place = core.CPUPlace()
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
92 93 94 95
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                           values,
                                                           dense_shape,
                                                           place=place)
96
            assert coo.place.is_cpu_place()
97 98
            assert coo.values().place.is_cpu_place()
            assert coo.indices().place.is_cpu_place()
99 100 101 102

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
103 104 105 106
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
                                                           cols,
                                                           values, [3, 5],
                                                           place=place)
107
            assert csr.place.is_cpu_place()
108 109 110
            assert csr.crows().place.is_cpu_place()
            assert csr.cols().place.is_cpu_place()
            assert csr.values().place.is_cpu_place()
111 112 113 114 115 116 117 118

    def test_dtype(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            dense_shape = [2, 2]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
119 120 121 122
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                           values,
                                                           dense_shape,
                                                           dtype='float64')
123 124 125 126 127
            assert coo.dtype == paddle.float64

            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
128 129 130 131
            csr = paddle.incubate.sparse.sparse_csr_tensor(crows,
                                                           cols,
                                                           values, [3, 5],
                                                           dtype='float16')
132 133 134 135 136 137 138 139
            assert csr.dtype == paddle.float16

    def test_create_coo_no_shape(self):
        with _test_eager_guard():
            indices = [[0, 1], [0, 1]]
            values = [1.0, 2.0]
            indices = paddle.to_tensor(indices, dtype='int32')
            values = paddle.to_tensor(values, dtype='float32')
140
            coo = paddle.incubate.sparse.sparse_coo_tensor(indices, values)
141 142 143 144
            assert [2, 2] == coo.shape


class TestSparseConvert(unittest.TestCase):
145

146 147 148
    def test_to_sparse_coo(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
149 150 151
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
            dense_x = paddle.to_tensor(x, dtype='float32', stop_gradient=False)
152
            out = dense_x.to_sparse_coo(2)
153 154 155 156 157
            assert np.array_equal(out.indices().numpy(), indices)
            assert np.array_equal(out.values().numpy(), values)
            #test to_sparse_coo_grad backward
            out_grad_indices = [[0, 1], [0, 1]]
            out_grad_values = [2.0, 3.0]
158
            out_grad = paddle.incubate.sparse.sparse_coo_tensor(
159
                paddle.to_tensor(out_grad_indices),
160 161 162
                paddle.to_tensor(out_grad_values),
                shape=out.shape,
                stop_gradient=True)
163 164 165 166 167
            out.backward(out_grad)
            assert np.array_equal(dense_x.grad.numpy(),
                                  out_grad.to_dense().numpy())

    def test_coo_to_dense(self):
168
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
169 170 171
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
            indices_dtypes = ['int32', 'int64']
            for indices_dtype in indices_dtypes:
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    paddle.to_tensor(indices, dtype=indices_dtype),
                    paddle.to_tensor(values),
                    shape=[3, 4],
                    stop_gradient=False)
                dense_tensor = sparse_x.to_dense()
                #test to_dense_grad backward
                out_grad = [[1.0, 2.0, 3.0, 4.0], [5.0, 6.0, 7.0, 8.0],
                            [9.0, 10.0, 11.0, 12.0]]
                dense_tensor.backward(paddle.to_tensor(out_grad))
                #mask the out_grad by sparse_x.indices()
                correct_x_grad = [2.0, 4.0, 7.0, 9.0, 10.0]
                assert np.array_equal(correct_x_grad,
                                      sparse_x.grad.values().numpy())

                paddle.device.set_device("cpu")
                sparse_x_cpu = paddle.incubate.sparse.sparse_coo_tensor(
                    paddle.to_tensor(indices, dtype=indices_dtype),
                    paddle.to_tensor(values),
                    shape=[3, 4],
                    stop_gradient=False)
                dense_tensor_cpu = sparse_x_cpu.to_dense()
                dense_tensor_cpu.backward(paddle.to_tensor(out_grad))
                assert np.array_equal(correct_x_grad,
                                      sparse_x_cpu.grad.values().numpy())
199
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
200

201 202 203
    def test_to_sparse_csr(self):
        with _test_eager_guard():
            x = [[0, 1, 0, 2], [0, 0, 3, 0], [4, 5, 0, 0]]
204 205 206
            crows = [0, 2, 3, 5]
            cols = [1, 3, 2, 0, 1]
            values = [1, 2, 3, 4, 5]
207
            dense_x = paddle.to_tensor(x)
208
            out = dense_x.to_sparse_csr()
209 210 211
            assert np.array_equal(out.crows().numpy(), crows)
            assert np.array_equal(out.cols().numpy(), cols)
            assert np.array_equal(out.values().numpy(), values)
212

213
            dense_tensor = out.to_dense()
214 215
            assert np.array_equal(dense_tensor.numpy(), x)

216
    def test_coo_values_grad(self):
217
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True})
218 219 220
        with _test_eager_guard():
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [1.0, 2.0, 3.0, 4.0, 5.0]
221
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
222
                paddle.to_tensor(indices),
223 224 225
                paddle.to_tensor(values),
                shape=[3, 4],
                stop_gradient=False)
226 227 228 229 230
            values_tensor = sparse_x.values()
            out_grad = [2.0, 3.0, 5.0, 8.0, 9.0]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
231 232 233
            indices = [[0, 0, 1, 2, 2], [1, 3, 2, 0, 1]]
            values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0], [4.0, 4.0],
                      [5.0, 5.0]]
234
            sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
235 236 237 238 239 240 241 242 243 244
                paddle.to_tensor(indices),
                paddle.to_tensor(values),
                shape=[3, 4, 2],
                stop_gradient=False)
            values_tensor = sparse_x.values()
            out_grad = [[2.0, 2.0], [3.0, 3.0], [5.0, 5.0], [8.0, 8.0],
                        [9.0, 9.0]]
            # test coo_values_grad
            values_tensor.backward(paddle.to_tensor(out_grad))
            assert np.array_equal(out_grad, sparse_x.grad.values().numpy())
245
        fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False})
246

247 248
    def test_sparse_coo_tensor_grad(self):
        with _test_eager_guard():
249
            for device in devices:
250 251
                if device == 'cpu' or (device == 'gpu'
                                       and paddle.is_compiled_with_cuda()):
252 253 254 255
                    paddle.device.set_device(device)
                    indices = [[0, 1], [0, 1]]
                    values = [1, 2]
                    indices = paddle.to_tensor(indices, dtype='int32')
256 257 258
                    values = paddle.to_tensor(values,
                                              dtype='float32',
                                              stop_gradient=False)
259
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
260 261 262 263 264
                        indices, values, shape=[2, 2], stop_gradient=False)
                    grad_indices = [[0, 1], [1, 1]]
                    grad_values = [2, 3]
                    grad_indices = paddle.to_tensor(grad_indices, dtype='int32')
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
265
                    sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
266 267 268 269 270
                        grad_indices, grad_values, shape=[2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [0, 3]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())
271

272 273
                    # test the non-zero values is a vector
                    values = [[1, 1], [2, 2]]
274 275 276
                    values = paddle.to_tensor(values,
                                              dtype='float32',
                                              stop_gradient=False)
277
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
278 279 280
                        indices, values, shape=[2, 2, 2], stop_gradient=False)
                    grad_values = [[2, 2], [3, 3]]
                    grad_values = paddle.to_tensor(grad_values, dtype='float32')
281
                    sparse_out_grad = paddle.incubate.sparse.sparse_coo_tensor(
282 283 284 285 286 287
                        grad_indices, grad_values, shape=[2, 2, 2])
                    sparse_x.backward(sparse_out_grad)
                    correct_values_grad = [[0, 0], [3, 3]]
                    assert np.array_equal(correct_values_grad,
                                          values.grad.numpy())

288 289 290
    def test_sparse_coo_tensor_sorted(self):
        with _test_eager_guard():
            for device in devices:
291 292
                if device == 'cpu' or (device == 'gpu'
                                       and paddle.is_compiled_with_cuda()):
293
                    paddle.device.set_device(device)
294
                    #test unsorted and duplicate indices
295 296 297 298
                    indices = [[1, 0, 0], [0, 1, 1]]
                    values = [1.0, 2.0, 3.0]
                    indices = paddle.to_tensor(indices, dtype='int32')
                    values = paddle.to_tensor(values, dtype='float32')
299 300
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                        indices, values)
Z
zhangkaihuo 已提交
301
                    sparse_x = paddle.incubate.sparse.coalesce(sparse_x)
302 303 304 305 306 307 308
                    indices_sorted = [[0, 1], [1, 0]]
                    values_sorted = [5.0, 1.0]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

309 310 311
                    # test the non-zero values is a vector
                    values = [[1.0, 1.0], [2.0, 2.0], [3.0, 3.0]]
                    values = paddle.to_tensor(values, dtype='float32')
312 313
                    sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                        indices, values)
Z
zhangkaihuo 已提交
314
                    sparse_x = paddle.incubate.sparse.coalesce(sparse_x)
315 316 317 318 319 320
                    values_sorted = [[5.0, 5.0], [1.0, 1.0]]
                    assert np.array_equal(indices_sorted,
                                          sparse_x.indices().numpy())
                    assert np.array_equal(values_sorted,
                                          sparse_x.values().numpy())

Z
zhangkaihuo 已提交
321 322
    def test_batch_csr(self):
        with _test_eager_guard():
Z
zhangkaihuo 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340

            def verify(dense_x):
                sparse_x = dense_x.to_sparse_csr()
                out = sparse_x.to_dense()
                assert np.allclose(out.numpy(), dense_x.numpy())

            shape = np.random.randint(low=1, high=10, size=3)
            shape = list(shape)
            dense_x = paddle.randn(shape)
            dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
            verify(dense_x)

            #test batchs=1
            shape[0] = 1
            dense_x = paddle.randn(shape)
            dense_x = paddle.nn.functional.dropout(dense_x, p=0.5)
            verify(dense_x)

Z
zhangkaihuo 已提交
341
            shape = np.random.randint(low=3, high=10, size=3)
Z
zhangkaihuo 已提交
342 343 344 345 346 347 348 349 350 351 352 353 354 355 356
            shape = list(shape)
            dense_x = paddle.randn(shape)
            #set the 0th batch to zero
            dense_x[0] = 0
            verify(dense_x)

            dense_x = paddle.randn(shape)
            #set the 1th batch to zero
            dense_x[1] = 0
            verify(dense_x)

            dense_x = paddle.randn(shape)
            #set the 2th batch to zero
            dense_x[2] = 0
            verify(dense_x)
Z
zhangkaihuo 已提交
357

358 359

class TestCooError(unittest.TestCase):
360

361 362 363 364 365 366 367
    def test_small_shape(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[2, 3], [0, 2]]
                values = [1, 2]
                # 1. the shape too small
                dense_shape = [2, 2]
368
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
369 370 371 372 373 374 375 376
                    indices, values, shape=dense_shape)

    def test_same_nnz(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                # 2. test the nnz of indices must same as nnz of values
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
377 378
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    indices, values)
379 380 381 382 383 384 385

    def test_same_dimensions(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                indices = [[1, 2], [1, 0]]
                values = [1, 2, 3]
                shape = [2, 3, 4]
386 387 388
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(indices,
                                                                    values,
                                                                    shape=shape)
389 390 391 392 393 394

    def test_indices_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                indices = [[1.0, 2.0], [0, 1]]
                values = [1, 2]
395 396
                sparse_x = paddle.incubate.sparse.sparse_coo_tensor(
                    indices, values)
397 398 399


class TestCsrError(unittest.TestCase):
400

401 402 403 404 405 406 407
    def test_dimension1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
408 409
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
410 411 412 413 414 415 416 417

    def test_dimension2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 3, 3, 3]
418 419
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
420 421 422 423 424 425 426 427

    def test_same_shape1(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3]
                shape = [3, 4]
428 429
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
430

431 432 433 434 435 436 437
    def test_same_shape2(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3]
                cols = [0, 1, 2, 3]
                values = [1, 2, 3, 4]
                shape = [3, 4]
438 439
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
440 441 442 443 444 445 446 447

    def test_same_shape3(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [0, 1, 2, 3, 0, 1, 2]
                cols = [0, 1, 2, 3, 0, 1, 2]
                values = [1, 2, 3, 4, 0, 1, 2]
                shape = [2, 3, 4]
448 449
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
450 451 452 453 454 455 456 457

    def test_crows_first_value(self):
        with _test_eager_guard():
            with self.assertRaises(ValueError):
                crows = [1, 1, 2, 3]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3, 4]
458 459
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
460 461 462 463 464 465 466 467

    def test_dtype(self):
        with _test_eager_guard():
            with self.assertRaises(TypeError):
                crows = [0, 1, 2, 3.0]
                cols = [0, 1, 2]
                values = [1, 2, 3]
                shape = [3]
468 469
                sparse_x = paddle.incubate.sparse.sparse_csr_tensor(
                    crows, cols, values, shape)
470

471 472 473

if __name__ == "__main__":
    unittest.main()