lod_tensor.cc 17.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

W
wanghuancoder 已提交
15
#include "paddle/fluid/framework/lod_tensor.h"
16

F
fengjiayi 已提交
17
#include <stdint.h>
18

X
refine  
Xin Pan 已提交
19
#include "paddle/fluid/framework/version.h"
20

W
wanghuancoder 已提交
21 22 23 24 25
namespace paddle {
namespace platform {
class DeviceContext;
}  // namespace platform
}  // namespace paddle
26

27 28 29
namespace paddle {
namespace framework {

Q
Qiao Longfei 已提交
30 31 32 33 34 35
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
36
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
37
                 size_t elem_end) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
  PADDLE_ENFORCE_LT(level, in.size(),
                    platform::errors::InvalidArgument(
                        "The input LoDTensor's lod level should be less than "
                        "the LoD size, but received level is %d, LoD is %s.",
                        level, in));
  PADDLE_ENFORCE_LT(
      elem_begin, elem_end,
      platform::errors::InvalidArgument(
          "The index to start slicing should be less than the index to end "
          "slicing, but received start index is %d, end index is %d.",
          elem_begin, elem_end));
  PADDLE_ENFORCE_LT(
      elem_end, in[level].size(),
      platform::errors::InvalidArgument(
          "The index to end slicing should be less than the input LoD size, "
          "but received end index is %d, LoD size is %d.",
          elem_end, in[level].size()));
55 56 57 58 59 60 61

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
62 63 64
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
65 66
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
67
  }
68 69 70 71
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
72
    for (auto &ele : res[lvl]) {
73 74 75 76 77 78
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
79
LoD ToAbsOffset(const LoD &in) {
80 81 82
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
83 84 85 86
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
87 88 89
    }
  }
  return result;
90 91
}

武毅 已提交
92
bool operator==(const LoD &a, const LoD &b) {
93 94 95 96 97
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
98 99
    const auto &a_level = a[i];
    const auto &b_level = b[i];
100 101 102 103 104 105 106 107 108 109
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
110 111
}

Y
Yan Chunwei 已提交
112 113 114 115 116 117 118
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
119
    // check: all the offsets in a level should be non-descending
S
sneaxiy 已提交
120 121
    if (!std::is_sorted(level.begin(), level.end())) {
      return false;
Y
Yan Chunwei 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
143
    // allowed).
Y
Yan Chunwei 已提交
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

166
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
167
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
168 169 170 171
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
172 173 174 175 176 177 178 179 180 181 182
    PADDLE_ENFORCE_LE(start_idx, end_idx,
                      platform::errors::InvalidArgument(
                          "The start index should be less than the end index, "
                          "but received start index is %d, end index is %d.",
                          start_idx, end_idx));
    PADDLE_ENFORCE_LT(
        end_idx, lod[level_idx].size(),
        platform::errors::InvalidArgument(
            "The end index should be less than the LoD level size, but "
            "received end index is %d, LoD level size is %d.",
            end_idx, lod[level_idx].size()));
183 184 185 186
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
187
    sub_lod.emplace_back(level_lens);
188 189 190
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
191 192

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
193 194
}

武毅 已提交
195
void AppendLoD(LoD *lod, const LoD &lod_length) {
196 197
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
198 199 200 201
      platform::errors::InvalidArgument(
          "The input LoD length should be equal to the appended LoD size, but "
          "received input LoD length is %d, actual LoD size is %d.",
          lod_length, lod->size()));
202
  if (lod->empty()) {
Y
Yang Yu 已提交
203 204 205
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
206 207
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
208
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
209
    auto &level = (*lod)[i];
210 211 212 213 214 215
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
216 217
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
218
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
219 220
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
221
  }
222 223 224 225 226 227
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
228 229 230 231 232 233 234 235 236 237 238
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
239
  // the 3st field, Tensor
Y
Yi Wang 已提交
240
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
241 242
}

243 244 245 246 247 248 249 250
void SerializeToStream(std::ostream &os, const LoDTensor &tensor) {
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext *dev_ctx;
  auto place = tensor.place();
  dev_ctx = pool.Get(place);
  SerializeToStream(os, tensor, *dev_ctx);
}

251
void DeserializeFromStream(std::istream &os, LoDTensor *tensor) {
252 253 254 255 256 257
  platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
  const platform::DeviceContext *dev_ctx;
  dev_ctx = pool.Get(platform::CPUPlace());
  DeserializeFromStream(os, tensor, *dev_ctx);
}

T
tangwei12 已提交
258 259 260 261 262 263 264 265 266 267
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx,
                           const size_t &seek,
                           const std::vector<int64_t> &shape) {
  {
    // the 1st field, unit32_t version for LoDTensor
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(framework::IsTensorVersionSupported(version), true,
                      platform::errors::InvalidArgument(
268
                          "Tensor version %u is not supported.", version));
T
tangwei12 已提交
269 270 271
    PADDLE_ENFORCE_EQ(
        version, 0U,
        platform::errors::InvalidArgument(
272 273
            "Deserialize to tensor failed, maybe the loaded file is "
            "not a paddle model(expected file format: 0, but %u found).",
T
tangwei12 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286
            version));
  }
  {
    // the 2st field, LoD information
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
  }
  // the 3st filed, Tensor
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx, seek, shape);
}

Y
Yancey 已提交
287 288
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
289
  {
Y
Yancey 已提交
290
    // the 1st field, unit32_t version for LoDTensor
291 292
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
T
tangwei12 已提交
293 294
    PADDLE_ENFORCE_EQ(framework::IsTensorVersionSupported(version), true,
                      platform::errors::InvalidArgument(
295
                          "Tensor version %u is not supported.", version));
T
tangwei12 已提交
296 297 298
    PADDLE_ENFORCE_EQ(
        version, 0U,
        platform::errors::InvalidArgument(
299 300
            "Deserialize to tensor failed, maybe the loaded file is "
            "not a paddle model(expected file format: 0, but %u found).",
T
tangwei12 已提交
301
            version));
武毅 已提交
302
  }
303 304
  {
    // the 2st field, LoD information
武毅 已提交
305 306 307 308 309 310 311 312 313 314 315 316 317
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
318
  // the 3st filed, Tensor
Y
Yi Wang 已提交
319
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
320 321
}

Y
Yang Yang 已提交
322 323
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
324 325
  PADDLE_ENFORCE_GT(places.size(), 0,
                    platform::errors::InvalidArgument(
326
                        "Place number cannot be empty when splitting."));
Y
Yang Yang 已提交
327
  check_memory_size();
328 329
  size_t batch_size =
      lod().empty() ? static_cast<size_t>(dims()[0]) : lod()[0].size() - 1;
Y
Yu Yang 已提交
330

331
  // if batch_size is 0, just return #places.size() copys of empty
332
  // tensors.
333 334 335
  if (batch_size == 0) {
    std::vector<LoDTensor> empty_results;
    empty_results.reserve(places.size());
336 337 338 339 340 341 342
    for (size_t i = 0; i < places.size(); ++i) {
      LoDTensor dst;
      dst.Resize(dims());
      dst.mutable_data(places[i], type());
      if (!lod().empty()) {
        dst.set_lod(lod());
      }
343
      empty_results.emplace_back(std::move(dst));
344
    }
345
    return empty_results;
346 347
  }

348 349 350 351 352
  auto step_width = (batch_size + places.size() - 1) / places.size();
  auto result_size = (batch_size + step_width - 1) / step_width;
  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yu Yang 已提交
353
  for (size_t i = 0; i < result_size; ++i) {
354 355 356 357
    auto begin = i * step_width;
    auto end = std::min<size_t>((i + 1) * step_width, batch_size);
    PADDLE_ENFORCE_LT(begin, end,
                      platform::errors::InvalidArgument(
358 359 360
                          "The begin index must be less than the end index, "
                          "but received begin index is %d, end index is %d.",
                          begin, end));
Y
Yang Yang 已提交
361

362
    LoDTensor dst;
Y
Yang Yang 已提交
363 364
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
365
      auto &dst_place = places[i];
Y
Yi Wang 已提交
366
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
367 368 369 370 371
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
372
      auto &dst_place = places[i];
Y
Yi Wang 已提交
373
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
374 375 376 377 378 379 380 381 382 383 384

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
385
    results.emplace_back(std::move(dst));
Y
Yang Yang 已提交
386 387
  }

Y
Yu Yang 已提交
388
  return results;
Y
Yang Yang 已提交
389 390
}

Y
Yang Yang 已提交
391
void LoDTensor::MergeLoDTensor(
392 393
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
394 395 396
  PADDLE_ENFORCE_EQ(lod_tensors.empty(), false,
                    platform::errors::InvalidArgument(
                        "The LoDTensors to be merged are empty."));
Y
Yang Yang 已提交
397

Y
Yang Yang 已提交
398
  framework::DDim new_dim = lod_tensors[0]->dims();
399
  proto::VarType::Type new_type = proto::VarType::FP32;
Y
Yang Yang 已提交
400
  framework::DataLayout new_layout = lod_tensors[0]->layout();
401 402 403 404 405 406 407 408 409
  for (auto *t : lod_tensors) {
    if (t->numel() && t->IsInitialized()) {
      new_dim = t->dims();
      new_type = t->type();
      new_layout = t->layout();
      break;
    }
  }

Y
Yang Yang 已提交
410
  LoD new_lod = lod_tensors[0]->lod();
411

Y
Yang Yang 已提交
412 413
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
414
    if (t->numel() && t->IsInitialized()) {
415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434
      PADDLE_ENFORCE_EQ(
          new_type, t->type(),
          platform::errors::InvalidArgument(
              "LoDTensor data type does not match, expected type is %s, actual "
              "type is %s.",
              DataTypeToString(new_type), DataTypeToString(t->type())));
      PADDLE_ENFORCE_EQ(
          new_layout, t->layout(),
          platform::errors::InvalidArgument(
              "LoDTensor layout does not match, expected layout is %s, "
              "actual layout is %s.",
              DataLayoutToString(new_layout), DataLayoutToString(t->layout())));
      PADDLE_ENFORCE_EQ(
          framework::product(new_dim) / new_dim[0],
          framework::product(t->dims()) / t->dims()[0],
          platform::errors::InvalidArgument(
              "LoDTensor dimension does not match, all dimensions except the "
              "first dimension need to be equal,"
              "but expected dimension is %s, actual dimension is %s.",
              new_dim, t->dims()));
435 436
      new_dim[0] += t->dims()[0];
    }
Y
Yang Yang 已提交
437 438

    auto &lod = t->lod();
439 440 441 442 443
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size(),
                      platform::errors::InvalidArgument(
                          "The LoD information of LoDTensor does not match, "
                          "expected LoD is %s, actual LoD is %s.",
                          new_lod, lod));
Y
Yang Yang 已提交
444 445
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
446
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
447 448 449 450
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
451 452
  }
  Resize(new_dim);
453
  set_layout(new_layout);
Y
Yang Yang 已提交
454
  set_lod(new_lod);
455
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
456

457
  int begin = 0;
Y
Yang Yang 已提交
458
  for (auto *src : lod_tensors) {
459
    int end = begin + src->dims()[0];
460 461 462
    if (end == begin) {
      continue;
    }
463
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
464
    framework::TensorCopy(*src, dst_place, &dst);
465
    begin = end;
Y
Yang Yang 已提交
466 467 468
  }
}

469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

502 503
}  // namespace framework
}  // namespace paddle