lod_tensor.cc 14.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

F
fengjiayi 已提交
15 16 17 18 19
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <iterator>

Y
Yi Wang 已提交
20 21
#include "paddle/fluid/framework/data_type.h"
#include "paddle/fluid/framework/framework.pb.h"
F
fengjiayi 已提交
22
#include "paddle/fluid/framework/lod_tensor.h"
S
sneaxiy 已提交
23
#include "paddle/fluid/framework/var_type.h"
X
refine  
Xin Pan 已提交
24
#include "paddle/fluid/framework/version.h"
25

Y
Yi Wang 已提交
26 27
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/memory/memory.h"
28

Y
Yu Yang 已提交
29 30 31
#include "paddle/fluid/recordio/scanner.h"
#include "paddle/fluid/recordio/writer.h"

32 33 34
namespace paddle {
namespace framework {

武毅 已提交
35
std::ostream &operator<<(std::ostream &os, const LoD &lod) {
36
  os << "{";
武毅 已提交
37
  for (auto &v : lod) {
38
    os << "{";
L
Liu Yiqun 已提交
39
    bool is_first = true;
武毅 已提交
40
    for (auto &i : v) {
L
Liu Yiqun 已提交
41 42 43 44 45 46
      if (is_first) {
        os << i;
        is_first = false;
      } else {
        os << ", " << i;
      }
47 48 49 50 51 52 53 54
    }
    os << "}";
  }
  os << "}";

  return os;
}

Y
Yang Yang 已提交
55
std::ostream &operator<<(std::ostream &os, const LoDTensor &t) {
56 57
  if (!platform::is_cpu_place(t.place())) {
    LoDTensor tt;
Y
Yi Wang 已提交
58
    framework::TensorCopy(t, platform::CPUPlace(), &tt);
59 60 61 62 63 64 65 66
    platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
    auto &dev_ctx = *pool.Get(t.place());
    dev_ctx.Wait();

    os << tt;
    return os;
  }

Y
Yang Yang 已提交
67 68 69 70 71 72
  os << "dim: " << t.dims() << "\n";
  os << "lod: " << t.lod() << "\n";

  // only print first ten elements
  int64_t size = t.numel() < 10 ? t.numel() : 10;
  for (int64_t i = 0; i < size; ++i) {
Y
Yu Yang 已提交
73
    if (t.type() == proto::VarType::FP32) {
74
      os << t.data<float>()[i] << " ";
Y
Yu Yang 已提交
75
    } else if (t.type() == proto::VarType::INT64) {
76 77 78 79
      os << t.data<int64_t>()[i] << " ";
    } else {
      PADDLE_THROW("LoDTensor data type not in [float, int64_t]");
    }
Y
Yang Yang 已提交
80 81 82 83 84
  }

  return os;
}

Q
Qiao Longfei 已提交
85 86 87 88 89 90
std::string LoDToString(const LoD &lod) {
  std::ostringstream stream;
  stream << lod;
  return stream.str();
}

武毅 已提交
91
LoD SliceInLevel(const LoD &in, size_t level, size_t elem_begin,
Q
qijun 已提交
92
                 size_t elem_end) {
93
  PADDLE_ENFORCE_LT(level, in.size());
94
  PADDLE_ENFORCE_LT(elem_begin, elem_end);
95 96 97 98 99 100 101 102
  PADDLE_ENFORCE_LT(elem_end, in[level].size());

  LoD res;
  res.resize(in.size() - level);
  // copy the first level
  res[0].assign(in[level].begin() + elem_begin,
                in[level].begin() + elem_end + 1);
  for (size_t lvl = 1; lvl < res.size(); lvl++) {
武毅 已提交
103 104 105
    const auto &in_level = in[level + lvl];
    const auto &above_level = res[lvl - 1];
    auto &out_level = res[lvl];
106 107
    out_level.assign(in_level.begin() + above_level.front(),
                     in_level.begin() + above_level.back() + 1);
108
  }
109 110 111 112
  for (size_t lvl = 0; lvl < res.size(); lvl++) {
    // to make the first offset equals 0, all the elements minus the first
    // element
    size_t front = res[lvl].front();
武毅 已提交
113
    for (auto &ele : res[lvl]) {
114 115 116 117 118 119
      ele -= front;
    }
  }
  return res;
}

武毅 已提交
120
LoD ToAbsOffset(const LoD &in) {
121 122 123
  // the lowest level stores relative offsets
  if (in.empty() || in.size() == 1) return in;
  LoD result = in;
Q
Qiao Longfei 已提交
124 125 126 127
  for (auto level = static_cast<int>(in.size() - 2); level >= 0; level--) {
    for (size_t i = 0; i < in[level].size(); ++i) {
      size_t index = in[level][i];
      result[level][i] = result[level + 1][index];
128 129 130
    }
  }
  return result;
131 132
}

武毅 已提交
133
bool operator==(const LoD &a, const LoD &b) {
134 135 136 137 138
  if (a.size() != b.size()) {
    return false;
  }

  for (size_t i = 0; i < a.size(); i++) {
武毅 已提交
139 140
    const auto &a_level = a[i];
    const auto &b_level = b[i];
141 142 143 144 145 146 147 148 149 150
    if (a_level.size() != b_level.size()) {
      return false;
    }
    for (size_t j = 0; j < a_level.size(); j++) {
      if (a_level[j] != b_level[j]) {
        return false;
      }
    }
  }
  return true;
151 152
}

Y
Yan Chunwei 已提交
153 154 155 156 157 158 159 160 161
bool CheckLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;
    // check: the first offset(the begin offset) of each level should be 0.
    if (level.front() != 0) return false;
    // check: all the offsets in a level should be ascending(no same items
    // allows).
T
Tao Luo 已提交
162 163 164 165 166 167
    auto beg = level.begin();
    auto end = level.end();
    // Do not use std::is_sorted, because we need strictly sorted lod
    if (beg != end) {
      for (auto it = beg + 1; it != end; ++it) {
        if (*(it - 1) >= *it) {
Y
Yan Chunwei 已提交
168
          return false;
T
Tao Luo 已提交
169 170
        }
      }
Y
Yan Chunwei 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
    }
  }
  // check: the lowest level's last offset should equals `tensor_height` if
  //        tensor_height>0.
  if (tensor_height > 0 && (size_t)tensor_height != in.back().back())
    return false;

  // check: the higher level's last offset should equals the lower level's
  // size-1.
  // NOTE LoD store the levels from top to bottom, so the higher level goes
  // first.
  for (size_t level = 0; level < in.size() - 1; level++) {
    if (in[level].back() != in[level + 1].size() - 1) return false;
  }
  return true;
}

bool CheckAbsLoD(const LoD &in, int tensor_height) {
  if (in.empty()) return true;
  for (const auto &level : in) {
    // check: all the offsets in a level should be ascending(no same items
    // allows).
    if (!std::is_sorted(level.begin(), level.begin(), [](size_t a, size_t b) {
          if (a < b) return true;
          return false;
        })) {
      return false;
    }

    // check: there should be more than 2 offsets existing in each level.
    if (level.size() < 2) return false;

    // check: the first offset of each level should be 0, and the last should be
    // the same(the height of underlying tensor).
    if (level.front() != 0) return false;
    if (tensor_height < 0) {
      tensor_height = level.back();
    } else if ((size_t)tensor_height != level.back()) {
      return false;
    }
  }
  return true;
}

215
using LoDAndOffset = std::pair<LoD, std::pair<size_t, size_t>>;
武毅 已提交
216
LoDAndOffset GetSubLoDAndAbsoluteOffset(const LoD &lod, size_t start_idx,
217 218 219 220 221 222
                                        size_t end_idx, size_t start_level) {
  LoD sub_lod;

  for (size_t level_idx = start_level; level_idx < lod.size(); ++level_idx) {
    PADDLE_ENFORCE_LE(start_idx, end_idx);
    PADDLE_ENFORCE_LT(end_idx, lod[level_idx].size());
223 224 225 226
    std::vector<size_t> level_lens;
    for (size_t i = start_idx; i < end_idx; ++i) {
      level_lens.push_back(lod[level_idx][i + 1] - lod[level_idx][i]);
    }
227
    sub_lod.emplace_back(level_lens);
228 229 230
    start_idx = lod[level_idx][start_idx];
    end_idx = lod[level_idx][end_idx];
  }
231 232

  return LoDAndOffset{sub_lod, {start_idx, end_idx}};
233 234
}

武毅 已提交
235
void AppendLoD(LoD *lod, const LoD &lod_length) {
236 237
  PADDLE_ENFORCE(
      lod->empty() || lod->size() == lod_length.size(),
238
      "The lod_length should has the same size with the appended lod.");
239
  if (lod->empty()) {
Y
Yang Yu 已提交
240 241 242
    for (size_t i = 0; i < lod_length.size(); ++i) {
      lod->emplace_back(1, 0);  // size = 1, value = 0;
    }
243 244
    *lod = LoD(lod_length.size(), std::vector<size_t>({0}));
  }
245
  for (size_t i = 0; i < lod->size(); ++i) {
武毅 已提交
246
    auto &level = (*lod)[i];
247 248 249 250 251 252
    for (size_t len : lod_length[i]) {
      level.push_back(level.back() + len);
    }
  }
}

武毅 已提交
253 254
void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
                       const platform::DeviceContext &dev_ctx) {
255
  {  // the 1st field, uint32_t version for LoDTensor
X
refine  
Xin Pan 已提交
256 257
    os.write(reinterpret_cast<const char *>(&kCurTensorVersion),
             sizeof(kCurTensorVersion));
武毅 已提交
258
  }
259 260 261 262 263 264
  {
    // the 2st field, LoD information
    // uint64_t lod_level
    // uint64_t lod_level_1 size in byte.
    // int*     lod_level_1 data
    // ...
武毅 已提交
265 266 267 268 269 270 271 272 273 274 275
    auto lod = tensor.lod();
    uint64_t size = lod.size();
    os.write(reinterpret_cast<const char *>(&size), sizeof(size));

    for (auto &each : lod) {
      size = each.size() * sizeof(framework::LoD::value_type::value_type);
      os.write(reinterpret_cast<const char *>(&size), sizeof(size));
      os.write(reinterpret_cast<const char *>(each.data()),
               static_cast<std::streamsize>(size));
    }
  }
276
  // the 3st field, Tensor
Y
Yi Wang 已提交
277
  TensorToStream(os, static_cast<Tensor>(tensor), dev_ctx);
武毅 已提交
278 279
}

Y
Yancey 已提交
280 281
void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
                           const platform::DeviceContext &dev_ctx) {
282
  {
Y
Yancey 已提交
283
    // the 1st field, unit32_t version for LoDTensor
284 285
    uint32_t version;
    is.read(reinterpret_cast<char *>(&version), sizeof(version));
X
refine  
Xin Pan 已提交
286 287
    PADDLE_ENFORCE(framework::IsTensorVersionSupported(version),
                   "tensor version %u is not supported.", version);
288
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
武毅 已提交
289
  }
290 291
  {
    // the 2st field, LoD information
武毅 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304
    uint64_t lod_level;
    is.read(reinterpret_cast<char *>(&lod_level), sizeof(lod_level));
    auto &lod = *tensor->mutable_lod();
    lod.resize(lod_level);
    for (uint64_t i = 0; i < lod_level; ++i) {
      uint64_t size;
      is.read(reinterpret_cast<char *>(&size), sizeof(size));
      std::vector<size_t> tmp(size / sizeof(size_t));
      is.read(reinterpret_cast<char *>(tmp.data()),
              static_cast<std::streamsize>(size));
      lod[i] = tmp;
    }
  }
305
  // the 3st filed, Tensor
Y
Yi Wang 已提交
306
  TensorFromStream(is, static_cast<Tensor *>(tensor), dev_ctx);
武毅 已提交
307 308
}

F
fengjiayi 已提交
309
void WriteToRecordIO(recordio::Writer *writer,
Y
Yu Yang 已提交
310 311 312 313 314 315 316 317
                     const std::vector<LoDTensor> &tensor,
                     const platform::DeviceContext &dev_ctx) {
  std::stringstream buffer;
  size_t sz = tensor.size();
  buffer.write(reinterpret_cast<const char *>(&sz), sizeof(uint32_t));
  for (auto &each : tensor) {
    SerializeToStream(buffer, each, dev_ctx);
  }
F
fengjiayi 已提交
318
  writer->Write(buffer.str());
Y
Yu Yang 已提交
319 320
}

Y
yuyang18 已提交
321 322 323 324 325
bool ReadFromRecordIO(recordio::Scanner *scanner,
                      const platform::DeviceContext &dev_ctx,
                      std::vector<LoDTensor> *result_ptr) {
  if (!scanner->HasNext()) {
    return false;
Y
Yu Yang 已提交
326
  }
Y
yuyang18 已提交
327 328 329 330 331 332 333 334 335 336
  std::istringstream sin(scanner->Next());
  uint32_t sz;
  sin.read(reinterpret_cast<char *>(&sz), sizeof(uint32_t));
  auto &result = *result_ptr;
  result.resize(sz);
  for (uint32_t i = 0; i < sz; ++i) {
    DeserializeFromStream(sin, &result[i], dev_ctx);
  }

  return true;
Y
Yu Yang 已提交
337
}
P
peizhilin 已提交
338

Y
Yang Yang 已提交
339 340 341
std::vector<LoDTensor> LoDTensor::SplitLoDTensor(
    const std::vector<platform::Place> places) const {
  check_memory_size();
Y
Yang Yang 已提交
342 343 344 345
  int batch_size =
      lod().empty() ? dims()[0] : static_cast<int>(lod()[0].size()) - 1;
  size_t result_size = std::min(static_cast<size_t>(batch_size), places.size());
  size_t remainder = batch_size % places.size();
Y
Yu Yang 已提交
346 347 348 349

  std::vector<LoDTensor> results;
  results.reserve(result_size);

Y
Yang Yang 已提交
350
  int step_width = static_cast<int>(batch_size / result_size);
Y
Yu Yang 已提交
351 352 353 354 355 356
  for (size_t i = 0; i < result_size; ++i) {
    int begin = static_cast<int>(i * step_width);
    int end = static_cast<int>((i + 1) * step_width);
    if (i + 1 == places.size()) {  // last
      end += remainder;
    }
Y
Yang Yang 已提交
357

358
    LoDTensor dst;
Y
Yang Yang 已提交
359 360
    if (lod().empty()) {
      auto src = Slice(begin, end);
Y
Yang Yang 已提交
361
      auto &dst_place = places[i];
Y
Yi Wang 已提交
362
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
363 364 365 366 367
    } else {
      auto lod_and_offset = GetSubLoDAndAbsoluteOffset(lod(), begin, end, 0);

      auto &offset = lod_and_offset.second;
      auto src = Slice(offset.first, offset.second);
Y
Yang Yang 已提交
368
      auto &dst_place = places[i];
Y
Yi Wang 已提交
369
      framework::TensorCopy(src, dst_place, &dst);
Y
Yang Yang 已提交
370 371 372 373 374 375 376 377 378 379 380

      LoD my_lod;
      for (auto &l : lod_and_offset.first) {
        std::vector<size_t> v{0};
        for (auto &ll : l) {
          v.push_back(ll + v.back());
        }
        my_lod.emplace_back(v);
      }
      dst.set_lod(my_lod);
    }
Y
Yang Yang 已提交
381
    results.emplace_back(dst);
Y
Yang Yang 已提交
382 383
  }

Y
Yu Yang 已提交
384
  return results;
Y
Yang Yang 已提交
385 386
}

Y
Yang Yang 已提交
387
void LoDTensor::MergeLoDTensor(
388 389
    const std::vector<const LoDTensor *> &lod_tensors,
    platform::Place dst_place) {
Y
Yang Yang 已提交
390
  PADDLE_ENFORCE(!lod_tensors.empty());
Y
Yang Yang 已提交
391

Y
Yang Yang 已提交
392
  framework::DDim new_dim = lod_tensors[0]->dims();
Y
Yu Yang 已提交
393
  auto new_type = lod_tensors[0]->type();
Y
Yang Yang 已提交
394 395 396 397
  framework::DataLayout new_layout = lod_tensors[0]->layout();
  LoD new_lod = lod_tensors[0]->lod();
  for (size_t i = 1; i < lod_tensors.size(); ++i) {
    auto *t = lod_tensors[i];
S
sneaxiy 已提交
398
    PADDLE_ENFORCE_EQ(new_type, t->type());
Y
Yang Yang 已提交
399 400 401 402 403 404 405
    PADDLE_ENFORCE_EQ(new_layout, t->layout());

    PADDLE_ENFORCE_EQ(framework::product(new_dim) / new_dim[0],
                      framework::product(t->dims()) / t->dims()[0]);
    new_dim[0] += t->dims()[0];

    auto &lod = t->lod();
F
fengjiayi 已提交
406
    PADDLE_ENFORCE_EQ(new_lod.size(), lod.size());
Y
Yang Yang 已提交
407 408
    for (size_t j = 0; j < lod.size(); ++j) {
      auto &sub_lod = new_lod[j];
C
chengduo 已提交
409
      size_t offset = sub_lod.back();
Y
Yang Yang 已提交
410 411 412 413
      for (size_t k = 1; k < lod[j].size(); ++k) {
        sub_lod.push_back(lod[j][k] + offset);
      }
    }
Y
Yang Yang 已提交
414 415
  }
  Resize(new_dim);
416
  set_layout(new_layout);
Y
Yang Yang 已提交
417
  set_lod(new_lod);
418
  mutable_data(dst_place, new_type);
Y
Yang Yang 已提交
419

420
  int begin = 0;
Y
Yang Yang 已提交
421
  for (auto *src : lod_tensors) {
422 423
    int end = begin + src->dims()[0];
    auto dst = Slice(begin, end);
Y
Yi Wang 已提交
424
    framework::TensorCopy(*src, dst_place, &dst);
425
    begin = end;
Y
Yang Yang 已提交
426 427 428
  }
}

429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
LoD ConvertToLengthBasedLoD(const LoD &offset_lod) {
  LoD length_lod;
  length_lod.reserve(offset_lod.size());
  for (size_t lvl = 0; lvl < offset_lod.size(); ++lvl) {
    std::vector<size_t> level;
    if (offset_lod[lvl].size() > 0) {
      level.reserve(offset_lod[lvl].size() - 1);
    }
    for (size_t idx = 0; idx < offset_lod[lvl].size() - 1; ++idx) {
      level.push_back(offset_lod[lvl][idx + 1] - offset_lod[lvl][idx]);
    }
    length_lod.push_back(level);
  }
  return length_lod;
}

LoD ConvertToOffsetBasedLoD(const LoD &length_lod) {
  LoD offset_lod;
  offset_lod.reserve(length_lod.size());
  for (size_t lvl = 0; lvl < length_lod.size(); ++lvl) {
    std::vector<size_t> level;
    level.reserve(length_lod[lvl].size() + 1);
    size_t tmp = 0;
    level.push_back(tmp);
    for (size_t idx = 0; idx < length_lod[lvl].size(); ++idx) {
      tmp += length_lod[lvl][idx];
      level.push_back(tmp);
    }
    offset_lod.push_back(level);
  }
  return offset_lod;
}

462 463
}  // namespace framework
}  // namespace paddle