test_rnn_decode_api.py 30.1 KB
Newer Older
1
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
G
Guo Sheng 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import random
G
Guo Sheng 已提交
16
import unittest
17
import numpy as np
G
Guo Sheng 已提交
18

19 20 21 22 23 24 25
import paddle
import paddle.nn as nn
from paddle import Model, set_device
from paddle.static import InputSpec as Input
from paddle.fluid.dygraph import Layer
from paddle.nn import BeamSearchDecoder, dynamic_decode

G
Guo Sheng 已提交
26 27 28 29 30
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import paddle.fluid.core as core

from paddle.fluid.executor import Executor
31
from paddle.fluid.framework import _test_eager_guard
32

33 34
paddle.enable_static()

G
Guo Sheng 已提交
35

36
class EncoderCell(layers.RNNCell):
37
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
G
Guo Sheng 已提交
38 39 40
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
41 42 43
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
44 45 46 47 48

    def call(self, step_input, states):
        new_states = []
        for i in range(self.num_layers):
            out, new_state = self.lstm_cells[i](step_input, states[i])
49 50 51 52 53
            step_input = (
                layers.dropout(out, self.dropout_prob)
                if self.dropout_prob > 0
                else out
            )
G
Guo Sheng 已提交
54 55 56 57 58 59 60 61
            new_states.append(new_state)
        return step_input, new_states

    @property
    def state_shape(self):
        return [cell.state_shape for cell in self.lstm_cells]


62
class DecoderCell(layers.RNNCell):
63
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
G
Guo Sheng 已提交
64 65 66
        self.num_layers = num_layers
        self.hidden_size = hidden_size
        self.dropout_prob = dropout_prob
67 68 69
        self.lstm_cells = [
            layers.LSTMCell(hidden_size) for i in range(num_layers)
        ]
G
Guo Sheng 已提交
70 71

    def attention(self, hidden, encoder_output, encoder_padding_mask):
72 73 74 75 76 77
        query = layers.fc(
            hidden, size=encoder_output.shape[-1], bias_attr=False
        )
        attn_scores = layers.matmul(
            layers.unsqueeze(query, [1]), encoder_output, transpose_y=True
        )
G
Guo Sheng 已提交
78
        if encoder_padding_mask is not None:
79 80 81
            attn_scores = layers.elementwise_add(
                attn_scores, encoder_padding_mask
            )
G
Guo Sheng 已提交
82
        attn_scores = layers.softmax(attn_scores)
83 84 85
        attn_out = layers.squeeze(
            layers.matmul(attn_scores, encoder_output), [1]
        )
G
Guo Sheng 已提交
86 87 88 89
        attn_out = layers.concat([attn_out, hidden], 1)
        attn_out = layers.fc(attn_out, size=self.hidden_size, bias_attr=False)
        return attn_out

90 91 92
    def call(
        self, step_input, states, encoder_output, encoder_padding_mask=None
    ):
G
Guo Sheng 已提交
93 94 95 96 97
        lstm_states, input_feed = states
        new_lstm_states = []
        step_input = layers.concat([step_input, input_feed], 1)
        for i in range(self.num_layers):
            out, new_lstm_state = self.lstm_cells[i](step_input, lstm_states[i])
98 99 100 101 102
            step_input = (
                layers.dropout(out, self.dropout_prob)
                if self.dropout_prob > 0
                else out
            )
G
Guo Sheng 已提交
103 104 105 106 107
            new_lstm_states.append(new_lstm_state)
        out = self.attention(step_input, encoder_output, encoder_padding_mask)
        return out, [new_lstm_states, out]


108
class Encoder:
109
    def __init__(self, num_layers, hidden_size, dropout_prob=0.0):
110
        self.encoder_cell = EncoderCell(num_layers, hidden_size, dropout_prob)
G
Guo Sheng 已提交
111

112 113 114 115 116
    def __call__(self, src_emb, src_sequence_length):
        encoder_output, encoder_final_state = layers.rnn(
            cell=self.encoder_cell,
            inputs=src_emb,
            sequence_length=src_sequence_length,
117 118
            is_reverse=False,
        )
119 120 121
        return encoder_output, encoder_final_state


122
class Decoder:
123 124 125 126 127 128 129 130
    def __init__(
        self,
        num_layers,
        hidden_size,
        dropout_prob,
        decoding_strategy="infer_sample",
        max_decoding_length=20,
    ):
131 132
        self.decoder_cell = DecoderCell(num_layers, hidden_size, dropout_prob)
        self.decoding_strategy = decoding_strategy
133 134 135 136 137 138 139 140 141 142 143 144 145
        self.max_decoding_length = (
            None
            if (self.decoding_strategy == "train_greedy")
            else max_decoding_length
        )

    def __call__(
        self,
        decoder_initial_states,
        encoder_output,
        encoder_padding_mask,
        **kwargs
    ):
146 147 148 149 150 151 152 153 154 155 156
        output_layer = kwargs.pop("output_layer", None)
        if self.decoding_strategy == "train_greedy":
            # for teach-forcing MLE pre-training
            helper = layers.TrainingHelper(**kwargs)
        elif self.decoding_strategy == "infer_sample":
            helper = layers.SampleEmbeddingHelper(**kwargs)
        elif self.decoding_strategy == "infer_greedy":
            helper = layers.GreedyEmbeddingHelper(**kwargs)

        if self.decoding_strategy == "beam_search":
            beam_size = kwargs.get("beam_size", 4)
157 158 159 160 161 162 163 164 165 166 167 168 169
            encoder_output = (
                layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                    encoder_output, beam_size
                )
            )
            encoder_padding_mask = (
                layers.BeamSearchDecoder.tile_beam_merge_with_batch(
                    encoder_padding_mask, beam_size
                )
            )
            decoder = layers.BeamSearchDecoder(
                cell=self.decoder_cell, output_fn=output_layer, **kwargs
            )
170
        else:
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
            decoder = layers.BasicDecoder(
                self.decoder_cell, helper, output_fn=output_layer
            )

        (
            decoder_output,
            decoder_final_state,
            dec_seq_lengths,
        ) = layers.dynamic_decode(
            decoder,
            inits=decoder_initial_states,
            max_step_num=self.max_decoding_length,
            encoder_output=encoder_output,
            encoder_padding_mask=encoder_padding_mask,
            impute_finished=False  # for test coverage
            if self.decoding_strategy == "beam_search"
            else True,
            is_test=True if self.decoding_strategy == "beam_search" else False,
            return_length=True,
        )
191 192 193
        return decoder_output, decoder_final_state, dec_seq_lengths


194
class Seq2SeqModel:
195 196
    """Seq2Seq model: RNN encoder-decoder with attention"""

197 198 199 200 201 202 203 204 205 206 207 208 209
    def __init__(
        self,
        num_layers,
        hidden_size,
        dropout_prob,
        src_vocab_size,
        trg_vocab_size,
        start_token,
        end_token,
        decoding_strategy="infer_sample",
        max_decoding_length=20,
        beam_size=4,
    ):
210
        self.start_token, self.end_token = start_token, end_token
211 212 213 214
        self.max_decoding_length, self.beam_size = (
            max_decoding_length,
            beam_size,
        )
J
Jiaqi Liu 已提交
215 216 217
        self.src_embeder = paddle.nn.Embedding(
            src_vocab_size,
            hidden_size,
218 219
            weight_attr=fluid.ParamAttr(name="source_embedding"),
        )
J
Jiaqi Liu 已提交
220 221 222
        self.trg_embeder = paddle.nn.Embedding(
            trg_vocab_size,
            hidden_size,
223 224
            weight_attr=fluid.ParamAttr(name="target_embedding"),
        )
225
        self.encoder = Encoder(num_layers, hidden_size, dropout_prob)
226 227 228 229 230 231 232 233 234 235 236 237 238 239
        self.decoder = Decoder(
            num_layers,
            hidden_size,
            dropout_prob,
            decoding_strategy,
            max_decoding_length,
        )
        self.output_layer = lambda x: layers.fc(
            x,
            size=trg_vocab_size,
            num_flatten_dims=len(x.shape) - 1,
            param_attr=fluid.ParamAttr(),
            bias_attr=False,
        )
G
Guo Sheng 已提交
240

241 242 243
    def __call__(self, src, src_length, trg=None, trg_length=None):
        # encoder
        encoder_output, encoder_final_state = self.encoder(
244 245
            self.src_embeder(src), src_length
        )
G
Guo Sheng 已提交
246 247

        decoder_initial_states = [
248 249
            encoder_final_state,
            self.decoder.decoder_cell.get_initial_states(
250 251
                batch_ref=encoder_output, shape=[encoder_output.shape[-1]]
            ),
G
Guo Sheng 已提交
252
        ]
253 254 255
        src_mask = layers.sequence_mask(
            src_length, maxlen=layers.shape(src)[1], dtype="float32"
        )
256 257
        encoder_padding_mask = (src_mask - 1.0) * 1e9
        encoder_padding_mask = layers.unsqueeze(encoder_padding_mask, [1])
G
Guo Sheng 已提交
258

259
        # decoder
260
        decoder_kwargs = (
261
            {
262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
                "inputs": self.trg_embeder(trg),
                "sequence_length": trg_length,
            }
            if self.decoder.decoding_strategy == "train_greedy"
            else (
                {
                    "embedding_fn": self.trg_embeder,
                    "beam_size": self.beam_size,
                    "start_token": self.start_token,
                    "end_token": self.end_token,
                }
                if self.decoder.decoding_strategy == "beam_search"
                else {
                    "embedding_fn": self.trg_embeder,
                    "start_tokens": layers.fill_constant_batch_size_like(
                        input=encoder_output,
                        shape=[-1],
                        dtype=src.dtype,
                        value=self.start_token,
                    ),
                    "end_token": self.end_token,
                }
            )
        )
286 287
        decoder_kwargs["output_layer"] = self.output_layer

288 289 290 291 292 293
        (decoder_output, decoder_final_state, dec_seq_lengths) = self.decoder(
            decoder_initial_states,
            encoder_output,
            encoder_padding_mask,
            **decoder_kwargs
        )
294 295
        if self.decoder.decoding_strategy == "beam_search":  # for inference
            return decoder_output
296 297 298 299 300
        logits, samples, sample_length = (
            decoder_output.cell_outputs,
            decoder_output.sample_ids,
            dec_seq_lengths,
        )
301 302 303 304
        probs = layers.softmax(logits)
        return probs, samples, sample_length


305
class PolicyGradient:
306 307 308 309 310 311 312 313 314
    """policy gradient"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, act_prob, action, reward, length=None):
        """
        update policy model self.model with policy gradient algorithm
        """
315 316 317
        self.reward = fluid.layers.py_func(
            func=reward_func, x=[action, length], out=reward
        )
318 319
        neg_log_prob = layers.cross_entropy(act_prob, action)
        cost = neg_log_prob * reward
320 321 322 323 324
        cost = (
            (layers.reduce_sum(cost) / layers.reduce_sum(length))
            if length is not None
            else layers.reduce_mean(cost)
        )
325 326 327 328 329 330 331 332
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(cost)
        return cost


def reward_func(samples, sample_length):
    """toy reward"""

333
    def discount_reward(reward, sequence_length, discount=1.0):
334 335
        return discount_reward_1d(reward, sequence_length, discount)

336
    def discount_reward_1d(reward, sequence_length, discount=1.0, dtype=None):
337 338
        if sequence_length is None:
            raise ValueError(
339 340
                'sequence_length must not be `None` for 1D reward.'
            )
341 342 343 344 345
        reward = np.array(reward)
        sequence_length = np.array(sequence_length)
        batch_size = reward.shape[0]
        max_seq_length = np.max(sequence_length)
        dtype = dtype or reward.dtype
346
        if discount == 1.0:
347
            dmat = np.ones([batch_size, max_seq_length], dtype=dtype)
G
Guo Sheng 已提交
348
        else:
349
            steps = np.tile(np.arange(max_seq_length), [batch_size, 1])
350 351 352
            mask = np.asarray(
                steps < (sequence_length - 1)[:, None], dtype=dtype
            )
353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386
            # Make each row = [discount, ..., discount, 1, ..., 1]
            dmat = mask * discount + (1 - mask)
            dmat = np.cumprod(dmat[:, ::-1], axis=1)[:, ::-1]
        disc_reward = dmat * reward[:, None]
        disc_reward = mask_sequences(disc_reward, sequence_length, dtype=dtype)
        return disc_reward

    def mask_sequences(sequence, sequence_length, dtype=None, time_major=False):
        sequence = np.array(sequence)
        sequence_length = np.array(sequence_length)
        rank = sequence.ndim
        if rank < 2:
            raise ValueError("`sequence` must be 2D or higher order.")
        batch_size = sequence.shape[0]
        max_time = sequence.shape[1]
        dtype = dtype or sequence.dtype
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        steps = np.tile(np.arange(max_time), [batch_size, 1])
        mask = np.asarray(steps < sequence_length[:, None], dtype=dtype)
        for _ in range(2, rank):
            mask = np.expand_dims(mask, -1)
        sequence = sequence * mask
        if time_major:
            sequence = np.transpose(sequence, axes=[1, 0, 2])
        return sequence

    samples = np.array(samples)
    sample_length = np.array(sample_length)
    # length reward
    reward = (5 - np.abs(sample_length - 5)).astype("float32")
    # repeat punishment to trapped into local minima getting all same words
    # beam search to get more than one sample may also can avoid this
    for i in range(reward.shape[0]):
387 388 389 390 391 392 393 394 395
        reward[i] += (
            -10
            if sample_length[i] > 1
            and np.all(samples[i][: sample_length[i] - 1] == samples[i][0])
            else 0
        )
    return discount_reward(reward, sample_length, discount=1.0).astype(
        "float32"
    )
396 397


398
class MLE:
399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415
    """teacher-forcing MLE training"""

    def __init__(self, lr=None):
        self.lr = lr

    def learn(self, probs, label, weight=None, length=None):
        loss = layers.cross_entropy(input=probs, label=label, soft_label=False)
        max_seq_len = layers.shape(probs)[1]
        mask = layers.sequence_mask(length, maxlen=max_seq_len, dtype="float32")
        loss = loss * mask
        loss = layers.reduce_mean(loss, dim=[0])
        loss = layers.reduce_sum(loss)
        optimizer = fluid.optimizer.Adam(self.lr)
        optimizer.minimize(loss)
        return loss


416
class SeqPGAgent:
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
    def __init__(
        self,
        model_cls,
        alg_cls=PolicyGradient,
        model_hparams={},
        alg_hparams={},
        executor=None,
        main_program=None,
        startup_program=None,
        seed=None,
    ):
        self.main_program = (
            fluid.Program() if main_program is None else main_program
        )
        self.startup_program = (
            fluid.Program() if startup_program is None else startup_program
        )
434 435 436 437 438 439 440 441 442
        if seed is not None:
            self.main_program.random_seed = seed
            self.startup_program.random_seed = seed
        self.build_program(model_cls, alg_cls, model_hparams, alg_hparams)
        self.executor = executor

    def build_program(self, model_cls, alg_cls, model_hparams, alg_hparams):
        with fluid.program_guard(self.main_program, self.startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
443 444 445
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64"
            )
446 447
            # only for teacher-forcing MLE training
            target = fluid.data(name="trg", shape=[None, None], dtype="int64")
448 449 450 451 452 453
            target_length = fluid.data(
                name="trg_sequence_length", shape=[None], dtype="int64"
            )
            label = fluid.data(
                name="label", shape=[None, None, 1], dtype="int64"
            )
454 455 456
            self.model = model_cls(**model_hparams)
            self.alg = alg_cls(**alg_hparams)
            self.probs, self.samples, self.sample_length = self.model(
457 458
                source, source_length, target, target_length
            )
459
            self.samples.stop_gradient = True
460
            self.reward = fluid.data(
461
                name="reward",
462
                shape=[None, None],  # batch_size, seq_len
463 464
                dtype=self.probs.dtype,
            )
465
            self.samples.stop_gradient = False
466 467 468
            self.cost = self.alg.learn(
                self.probs, self.samples, self.reward, self.sample_length
            )
469 470 471 472

        # to define the same parameters between different programs
        self.pred_program = self.main_program._prune_with_input(
            [source.name, source_length.name],
473 474
            [self.probs, self.samples, self.sample_length],
        )
475 476 477 478 479

    def predict(self, feed_dict):
        samples, sample_length = self.executor.run(
            self.pred_program,
            feed=feed_dict,
480 481
            fetch_list=[self.samples, self.sample_length],
        )
482 483 484
        return samples, sample_length

    def learn(self, feed_dict, fetch_list):
485 486 487
        results = self.executor.run(
            self.main_program, feed=feed_dict, fetch_list=fetch_list
        )
488 489 490 491 492 493 494 495 496 497 498 499 500 501 502
        return results


class TestDynamicDecode(unittest.TestCase):
    def setUp(self):
        np.random.seed(123)
        self.model_hparams = {
            "num_layers": 2,
            "hidden_size": 32,
            "dropout_prob": 0.1,
            "src_vocab_size": 100,
            "trg_vocab_size": 100,
            "start_token": 0,
            "end_token": 1,
            "decoding_strategy": "infer_greedy",
503
            "max_decoding_length": 10,
504 505 506 507 508 509 510
        }

        self.iter_num = iter_num = 2
        self.batch_size = batch_size = 4
        src_seq_len = 10
        trg_seq_len = 12
        self.data = {
511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531
            "src": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, src_seq_len),
            ).astype("int64"),
            "src_sequence_length": np.random.randint(
                1, src_seq_len, (iter_num * batch_size,)
            ).astype("int64"),
            "trg": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len),
            ).astype("int64"),
            "trg_sequence_length": np.random.randint(
                1, trg_seq_len, (iter_num * batch_size,)
            ).astype("int64"),
            "label": np.random.randint(
                2,
                self.model_hparams["src_vocab_size"],
                (iter_num * batch_size, trg_seq_len, 1),
            ).astype("int64"),
532 533
        }

534 535 536 537 538
        place = (
            core.CUDAPlace(0)
            if core.is_compiled_with_cuda()
            else core.CPUPlace()
        )
539 540 541
        self.exe = Executor(place)

    def test_mle_train(self):
542
        paddle.enable_static()
543
        self.model_hparams["decoding_strategy"] = "train_greedy"
544 545 546 547 548 549 550 551 552 553
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=MLE,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123,
        )
554 555 556 557
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
                    "trg": self.data["trg"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "trg_sequence_length": self.data["trg_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
                    "label": self.data["label"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
585
                },
586 587 588 589 590 591
                fetch_list=[agent.cost, agent.cost],
            )
            print(
                "iter_idx: %d, reward: %f, cost: %f"
                % (iter_idx, reward.mean(), cost)
            )
592 593

    def test_greedy_train(self):
594
        paddle.enable_static()
595
        self.model_hparams["decoding_strategy"] = "infer_greedy"
596 597 598 599 600 601 602 603 604 605
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=PolicyGradient,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123,
        )
606 607 608 609
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
610 611 612 613 614 615 616 617 618 619 620
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
621
                },
622 623 624 625 626 627
                fetch_list=[agent.reward, agent.cost],
            )
            print(
                "iter_idx: %d, reward: %f, cost: %f"
                % (iter_idx, reward.mean(), cost)
            )
628 629

    def test_sample_train(self):
630
        paddle.enable_static()
631
        self.model_hparams["decoding_strategy"] = "infer_sample"
632 633 634 635 636 637 638 639 640 641
        agent = SeqPGAgent(
            model_cls=Seq2SeqModel,
            alg_cls=PolicyGradient,
            model_hparams=self.model_hparams,
            alg_hparams={"lr": 0.001},
            executor=self.exe,
            main_program=fluid.Program(),
            startup_program=fluid.Program(),
            seed=123,
        )
642 643 644 645
        self.exe.run(agent.startup_program)
        for iter_idx in range(self.iter_num):
            reward, cost = agent.learn(
                {
646 647 648 649 650 651 652 653 654 655 656
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
657
                },
658 659 660 661 662 663
                fetch_list=[agent.reward, agent.cost],
            )
            print(
                "iter_idx: %d, reward: %f, cost: %f"
                % (iter_idx, reward.mean(), cost)
            )
664 665

    def test_beam_search_infer(self):
666 667
        paddle.set_default_dtype("float32")
        paddle.enable_static()
668 669 670 671 672
        self.model_hparams["decoding_strategy"] = "beam_search"
        main_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(main_program, startup_program):
            source = fluid.data(name="src", shape=[None, None], dtype="int64")
673 674 675
            source_length = fluid.data(
                name="src_sequence_length", shape=[None], dtype="int64"
            )
676 677 678 679 680 681 682 683
            model = Seq2SeqModel(**self.model_hparams)
            output = model(source, source_length)

        self.exe.run(startup_program)
        for iter_idx in range(self.iter_num):
            trans_ids = self.exe.run(
                program=main_program,
                feed={
684 685 686 687 688 689 690 691 692 693 694
                    "src": self.data["src"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size,
                        :,
                    ],
                    "src_sequence_length": self.data["src_sequence_length"][
                        iter_idx
                        * self.batch_size : (iter_idx + 1)
                        * self.batch_size
                    ],
695
                },
696 697
                fetch_list=[output],
            )[0]
G
Guo Sheng 已提交
698

699
    def func_dynamic_basic_decoder(self):
J
Jiaqi Liu 已提交
700 701 702 703 704 705 706
        paddle.disable_static()
        src = paddle.to_tensor(np.random.randint(8, size=(8, 4)))
        src_length = paddle.to_tensor(np.random.randint(8, size=(8)))
        model = Seq2SeqModel(**self.model_hparams)
        probs, samples, sample_length = model(src, src_length)
        paddle.enable_static()

707 708 709 710 711
    def test_dynamic_basic_decoder(self):
        with _test_eager_guard():
            self.func_dynamic_basic_decoder()
        self.func_dynamic_basic_decoder()

G
Guo Sheng 已提交
712

713 714 715 716 717 718 719 720 721
class ModuleApiTest(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
        cls._random_seed = 123
        np.random.seed(cls._random_seed)
        random.seed(cls._random_seed)

722
        cls.model_cls = type(
723 724 725
            cls.__name__ + "Model",
            (Layer,),
            {
726
                "__init__": cls.model_init_wrapper(cls.model_init),
727 728 729
                "forward": cls.model_forward,
            },
        )
730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746

    @classmethod
    def tearDownClass(cls):
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

    @staticmethod
    def model_init_wrapper(func):
        def __impl__(self, *args, **kwargs):
            Layer.__init__(self)
            func(self, *args, **kwargs)

        return __impl__

    @staticmethod
    def model_init(model, *args, **kwargs):
        raise NotImplementedError(
747 748
            "model_init acts as `Model.__init__`, thus must implement it"
        )
749 750 751 752 753 754 755 756

    @staticmethod
    def model_forward(model, *args, **kwargs):
        return model.module(*args, **kwargs)

    def make_inputs(self):
        # TODO(guosheng): add default from `self.inputs`
        raise NotImplementedError(
757 758
            "model_inputs makes inputs for model, thus must implement it"
        )
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

    def setUp(self):
        """
        For the model which wraps the module to be tested:
            Set input data by `self.inputs` list
            Set init argument values by `self.attrs` list/dict
            Set model parameter values by `self.param_states` dict
            Set expected output data by `self.outputs` list
        We can create a model instance and run once with these.
        """
        self.inputs = []
        self.attrs = {}
        self.param_states = {}
        self.outputs = []

    def _calc_output(self, place, mode="test", dygraph=True):
        if dygraph:
            fluid.enable_dygraph(place)
        else:
            fluid.disable_dygraph()
C
cnn 已提交
779
        gen = paddle.seed(self._random_seed)
780 781 782
        paddle.framework.random._manual_program_seed(self._random_seed)
        scope = fluid.core.Scope()
        with fluid.scope_guard(scope):
783 784 785 786 787
            layer = (
                self.model_cls(**self.attrs)
                if isinstance(self.attrs, dict)
                else self.model_cls(*self.attrs)
            )
788 789 790 791
            model = Model(layer, inputs=self.make_inputs())
            model.prepare()
            if self.param_states:
                model.load(self.param_states, optim_state=None)
792
            return model.predict_batch(self.inputs)
793 794 795 796 797 798

    def check_output_with_place(self, place, mode="test"):
        dygraph_output = self._calc_output(place, mode, dygraph=True)
        stgraph_output = self._calc_output(place, mode, dygraph=False)
        expect_output = getattr(self, "outputs", None)
        for actual_t, expect_t in zip(dygraph_output, stgraph_output):
799
            np.testing.assert_allclose(actual_t, expect_t, rtol=1e-05, atol=0)
800 801
        if expect_output:
            for actual_t, expect_t in zip(dygraph_output, expect_output):
802 803 804
                np.testing.assert_allclose(
                    actual_t, expect_t, rtol=1e-05, atol=0
                )
805 806 807 808 809 810 811 812 813 814 815 816 817 818

    def check_output(self):
        devices = ["CPU", "GPU"] if fluid.is_compiled_with_cuda() else ["CPU"]
        for device in devices:
            place = set_device(device)
            self.check_output_with_place(place)


class TestBeamSearch(ModuleApiTest):
    def setUp(self):
        paddle.set_default_dtype("float64")
        shape = (8, 32)
        self.inputs = [
            np.random.random(shape).astype("float64"),
819
            np.random.random(shape).astype("float64"),
820 821 822 823 824 825 826 827 828 829
        ]
        self.outputs = None
        self.attrs = {
            "vocab_size": 100,
            "embed_dim": 32,
            "hidden_size": 32,
        }
        self.param_states = {}

    @staticmethod
830 831 832 833 834 835 836 837 838 839 840 841 842
    def model_init(
        self,
        vocab_size,
        embed_dim,
        hidden_size,
        bos_id=0,
        eos_id=1,
        beam_size=4,
        max_step_num=20,
    ):
        embedder = paddle.fluid.dygraph.Embedding(
            size=[vocab_size, embed_dim], dtype="float64"
        )
843 844 845
        output_layer = nn.Linear(hidden_size, vocab_size)
        cell = nn.LSTMCell(embed_dim, hidden_size)
        self.max_step_num = max_step_num
846 847 848 849 850 851 852 853
        self.beam_search_decoder = BeamSearchDecoder(
            cell,
            start_token=bos_id,
            end_token=eos_id,
            beam_size=beam_size,
            embedding_fn=embedder,
            output_fn=output_layer,
        )
854 855 856

    @staticmethod
    def model_forward(model, init_hidden, init_cell):
857 858 859 860 861 862 863
        return dynamic_decode(
            model.beam_search_decoder,
            [init_hidden, init_cell],
            max_step_num=model.max_step_num,
            impute_finished=True,
            is_test=True,
        )[0]
864 865 866 867 868 869 870 871

    def make_inputs(self):
        inputs = [
            Input([None, self.inputs[0].shape[-1]], "float64", "init_hidden"),
            Input([None, self.inputs[1].shape[-1]], "float64", "init_cell"),
        ]
        return inputs

872 873 874
    def func_check_output(self):
        self.setUp()
        self.make_inputs()
875 876
        self.check_output()

877 878 879 880 881
    def test_check_output(self):
        with _test_eager_guard():
            self.func_check_output()
        self.func_check_output()

882

G
Guo Sheng 已提交
883 884
if __name__ == '__main__':
    unittest.main()