test_crf_decoding_op.py 7.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

C
Cao Ying 已提交
15 16 17 18
import unittest
import random
import numpy as np

19
from op_test import OpTest
C
Cao Ying 已提交
20 21


22
class CRFDecoding:
23 24 25 26
    def __init__(
        self, emission_weights, transition_weights, seq_start_positions
    ):
        assert emission_weights.shape[0] == sum(seq_start_positions)
C
Cao Ying 已提交
27
        self.tag_num = emission_weights.shape[1]
28
        self.seq_num = len(seq_start_positions)
C
Cao Ying 已提交
29 30 31 32 33 34 35 36

        self.seq_start_positions = seq_start_positions
        self.x = emission_weights

        self.a = transition_weights[0, :]
        self.b = transition_weights[1, :]
        self.w = transition_weights[2:, :]

37 38 39 40 41 42
        self.track = np.zeros(
            (sum(seq_start_positions), self.tag_num), dtype="int64"
        )
        self.decoded_path = np.zeros(
            (sum(seq_start_positions), 1), dtype="int64"
        )
C
Cao Ying 已提交
43 44 45 46

    def _decode_one_sequence(self, decoded_path, x):
        seq_len, tag_num = x.shape
        alpha = np.zeros((seq_len, tag_num), dtype="float64")
Q
Qiao Longfei 已提交
47
        track = np.zeros((seq_len, tag_num), dtype="int64")
C
Cao Ying 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76

        for i in range(tag_num):
            alpha[0, i] = self.a[i] + x[0, i]

        for k in range(1, seq_len):
            for i in range(tag_num):
                max_score = -np.finfo("float64").max
                max_idx = 0
                for j in range(tag_num):
                    score = alpha[k - 1, j] + self.w[j, i]
                    if score > max_score:
                        max_score = score
                        max_idx = j
                alpha[k, i] = max_score + x[k, i]
                track[k, i] = max_idx

        max_score = -np.finfo("float64").max
        max_idx = 0
        for i in range(tag_num):
            score = alpha[seq_len - 1, i] + self.b[i]
            if score > max_score:
                max_score = score
                max_idx = i

        decoded_path[-1] = max_idx
        for i in range(seq_len - 1, 0, -1):
            decoded_path[i - 1] = max_idx = track[i, max_idx]

    def decode(self):
77
        cur_pos = 0
C
Cao Ying 已提交
78
        for i in range(self.seq_num):
79 80 81
            start = cur_pos
            cur_pos += self.seq_start_positions[i]
            end = cur_pos
82 83 84
            self._decode_one_sequence(
                self.decoded_path[start:end, :], self.x[start:end, :]
            )
C
Cao Ying 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98
        return self.decoded_path


class TestCRFDecodingOp1(OpTest):
    """
    Compare the dynamic program with random generated parameters and inputs
    with grouth truth not being given.
    """

    def set_test_data(self):
        SEQ_NUM = 3
        TAG_NUM = 17
        MAX_SEQ_LEN = 10

99 100
        lod = [[]]
        total_len = 0
C
Cao Ying 已提交
101
        for i in range(SEQ_NUM):
102 103
            lod[-1].append(random.randint(1, MAX_SEQ_LEN))
            total_len += lod[-1][-1]
104 105 106 107 108 109
        emission = np.random.uniform(-1, 1, [total_len, TAG_NUM]).astype(
            "float64"
        )
        transition = np.random.uniform(
            -0.5, 0.5, [TAG_NUM + 2, TAG_NUM]
        ).astype("float64")
C
Cao Ying 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134

        self.inputs = {
            "Emission": (emission, lod),
            "Transition": transition,
        }

        decoder = CRFDecoding(emission, transition, lod[0])
        decoded_path = decoder.decode()

        self.outputs = {"ViterbiPath": decoded_path}

    def setUp(self):
        self.op_type = "crf_decoding"
        self.set_test_data()

    def test_check_output(self):
        self.check_output()


class TestCRFDecodingOp2(OpTest):
    """
    Compare the dynamic program with brute force computation with
    ground truth being given.
    """

135 136 137
    def init_lod(self):
        self.lod = [[1, 2, 3, 4]]

C
Cao Ying 已提交
138 139 140 141
    def setUp(self):
        self.op_type = "crf_decoding"
        TAG_NUM = 5

142 143
        self.init_lod()
        total_len = sum(self.lod[-1])
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
        transition = np.repeat(
            np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            TAG_NUM + 2,
            axis=0,
        )
        emission = np.repeat(
            np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            total_len,
            axis=0,
        )

        labels = np.random.randint(
            low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64"
        )
        predicted_labels = np.ones((total_len, 1), dtype="int64") * (
            TAG_NUM - 1
        )
Q
Qiao Longfei 已提交
161
        expected_output = (labels == predicted_labels).astype("int64")
C
Cao Ying 已提交
162 163

        self.inputs = {
164
            "Emission": (emission, self.lod),
C
Cao Ying 已提交
165
            "Transition": transition,
166
            "Label": (labels, self.lod),
C
Cao Ying 已提交
167 168 169 170 171 172 173 174
        }

        self.outputs = {"ViterbiPath": expected_output}

    def test_check_output(self):
        self.check_output()


175 176 177 178 179 180 181 182 183 184
class TestCRFDecodingOp3(TestCRFDecodingOp2):
    def init_lod(self):
        self.lod = [[1, 0, 0, 4]]


class TestCRFDecodingOp4(TestCRFDecodingOp2):
    def init_lod(self):
        self.lod = [[0, 2, 3, 0]]


185 186 187 188 189 190
def seq_pad(data, length):
    max_len = np.max(length)
    shape = [len(length), max_len] + list(data.shape[1:])
    padded = np.zeros(shape).astype(data.dtype)
    offset = 0
    for i, l in enumerate(length):
191
        padded[i, 0:l] = data[offset : offset + l]
192 193 194 195
        offset += l
    return np.squeeze(padded)


196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
class TestCRFDecodingOp5(OpTest):
    """
    Compare the dynamic program with random generated parameters and inputs
    with grouth truth not being given.
    """

    def set_test_data(self):
        SEQ_NUM = 3
        TAG_NUM = 17
        MAX_SEQ_LEN = 10

        lod = [[]]
        total_len = 0
        for i in range(SEQ_NUM):
            lod[-1].append(random.randint(1, MAX_SEQ_LEN))
            total_len += lod[-1][-1]
212 213 214 215 216 217
        emission = np.random.uniform(-1, 1, [total_len, TAG_NUM]).astype(
            "float64"
        )
        transition = np.random.uniform(
            -0.5, 0.5, [TAG_NUM + 2, TAG_NUM]
        ).astype("float64")
218 219

        self.inputs = {
220
            "Emission": seq_pad(emission, lod[0]),
221 222 223 224 225 226 227
            "Transition": transition,
            "Length": np.array(lod).astype('int64'),
        }

        decoder = CRFDecoding(emission, transition, lod[0])
        decoded_path = decoder.decode()

228
        self.outputs = {"ViterbiPath": seq_pad(decoded_path, lod[0])}
229 230 231 232 233 234 235 236 237

    def setUp(self):
        self.op_type = "crf_decoding"
        self.set_test_data()

    def test_check_output(self):
        self.check_output()


238 239 240 241 242 243 244 245 246 247
class TestCRFDecodingOp6(OpTest):
    def init_lod(self):
        self.lod = [[1, 2, 3, 4]]

    def setUp(self):
        self.op_type = "crf_decoding"
        TAG_NUM = 5

        self.init_lod()
        total_len = sum(self.lod[-1])
248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
        transition = np.repeat(
            np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            TAG_NUM + 2,
            axis=0,
        )
        emission = np.repeat(
            np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
            total_len,
            axis=0,
        )

        labels = np.random.randint(
            low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64"
        )
        predicted_labels = np.ones((total_len, 1), dtype="int64") * (
            TAG_NUM - 1
        )
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        expected_output = (labels == predicted_labels).astype("int64")

        self.inputs = {
            "Emission": seq_pad(emission, self.lod[0]),
            "Transition": transition,
            "Label": seq_pad(labels, self.lod[0]),
            "Length": np.array(self.lod).astype('int64'),
        }

        self.outputs = {"ViterbiPath": seq_pad(expected_output, self.lod[0])}

    def test_check_output(self):
        self.check_output()


C
Cao Ying 已提交
280 281
if __name__ == "__main__":
    unittest.main()