# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import random import numpy as np from op_test import OpTest class CRFDecoding: def __init__( self, emission_weights, transition_weights, seq_start_positions ): assert emission_weights.shape[0] == sum(seq_start_positions) self.tag_num = emission_weights.shape[1] self.seq_num = len(seq_start_positions) self.seq_start_positions = seq_start_positions self.x = emission_weights self.a = transition_weights[0, :] self.b = transition_weights[1, :] self.w = transition_weights[2:, :] self.track = np.zeros( (sum(seq_start_positions), self.tag_num), dtype="int64" ) self.decoded_path = np.zeros( (sum(seq_start_positions), 1), dtype="int64" ) def _decode_one_sequence(self, decoded_path, x): seq_len, tag_num = x.shape alpha = np.zeros((seq_len, tag_num), dtype="float64") track = np.zeros((seq_len, tag_num), dtype="int64") for i in range(tag_num): alpha[0, i] = self.a[i] + x[0, i] for k in range(1, seq_len): for i in range(tag_num): max_score = -np.finfo("float64").max max_idx = 0 for j in range(tag_num): score = alpha[k - 1, j] + self.w[j, i] if score > max_score: max_score = score max_idx = j alpha[k, i] = max_score + x[k, i] track[k, i] = max_idx max_score = -np.finfo("float64").max max_idx = 0 for i in range(tag_num): score = alpha[seq_len - 1, i] + self.b[i] if score > max_score: max_score = score max_idx = i decoded_path[-1] = max_idx for i in range(seq_len - 1, 0, -1): decoded_path[i - 1] = max_idx = track[i, max_idx] def decode(self): cur_pos = 0 for i in range(self.seq_num): start = cur_pos cur_pos += self.seq_start_positions[i] end = cur_pos self._decode_one_sequence( self.decoded_path[start:end, :], self.x[start:end, :] ) return self.decoded_path class TestCRFDecodingOp1(OpTest): """ Compare the dynamic program with random generated parameters and inputs with grouth truth not being given. """ def set_test_data(self): SEQ_NUM = 3 TAG_NUM = 17 MAX_SEQ_LEN = 10 lod = [[]] total_len = 0 for i in range(SEQ_NUM): lod[-1].append(random.randint(1, MAX_SEQ_LEN)) total_len += lod[-1][-1] emission = np.random.uniform(-1, 1, [total_len, TAG_NUM]).astype( "float64" ) transition = np.random.uniform( -0.5, 0.5, [TAG_NUM + 2, TAG_NUM] ).astype("float64") self.inputs = { "Emission": (emission, lod), "Transition": transition, } decoder = CRFDecoding(emission, transition, lod[0]) decoded_path = decoder.decode() self.outputs = {"ViterbiPath": decoded_path} def setUp(self): self.op_type = "crf_decoding" self.set_test_data() def test_check_output(self): self.check_output() class TestCRFDecodingOp2(OpTest): """ Compare the dynamic program with brute force computation with ground truth being given. """ def init_lod(self): self.lod = [[1, 2, 3, 4]] def setUp(self): self.op_type = "crf_decoding" TAG_NUM = 5 self.init_lod() total_len = sum(self.lod[-1]) transition = np.repeat( np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM), TAG_NUM + 2, axis=0, ) emission = np.repeat( np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM), total_len, axis=0, ) labels = np.random.randint( low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64" ) predicted_labels = np.ones((total_len, 1), dtype="int64") * ( TAG_NUM - 1 ) expected_output = (labels == predicted_labels).astype("int64") self.inputs = { "Emission": (emission, self.lod), "Transition": transition, "Label": (labels, self.lod), } self.outputs = {"ViterbiPath": expected_output} def test_check_output(self): self.check_output() class TestCRFDecodingOp3(TestCRFDecodingOp2): def init_lod(self): self.lod = [[1, 0, 0, 4]] class TestCRFDecodingOp4(TestCRFDecodingOp2): def init_lod(self): self.lod = [[0, 2, 3, 0]] def seq_pad(data, length): max_len = np.max(length) shape = [len(length), max_len] + list(data.shape[1:]) padded = np.zeros(shape).astype(data.dtype) offset = 0 for i, l in enumerate(length): padded[i, 0:l] = data[offset : offset + l] offset += l return np.squeeze(padded) class TestCRFDecodingOp5(OpTest): """ Compare the dynamic program with random generated parameters and inputs with grouth truth not being given. """ def set_test_data(self): SEQ_NUM = 3 TAG_NUM = 17 MAX_SEQ_LEN = 10 lod = [[]] total_len = 0 for i in range(SEQ_NUM): lod[-1].append(random.randint(1, MAX_SEQ_LEN)) total_len += lod[-1][-1] emission = np.random.uniform(-1, 1, [total_len, TAG_NUM]).astype( "float64" ) transition = np.random.uniform( -0.5, 0.5, [TAG_NUM + 2, TAG_NUM] ).astype("float64") self.inputs = { "Emission": seq_pad(emission, lod[0]), "Transition": transition, "Length": np.array(lod).astype('int64'), } decoder = CRFDecoding(emission, transition, lod[0]) decoded_path = decoder.decode() self.outputs = {"ViterbiPath": seq_pad(decoded_path, lod[0])} def setUp(self): self.op_type = "crf_decoding" self.set_test_data() def test_check_output(self): self.check_output() class TestCRFDecodingOp6(OpTest): def init_lod(self): self.lod = [[1, 2, 3, 4]] def setUp(self): self.op_type = "crf_decoding" TAG_NUM = 5 self.init_lod() total_len = sum(self.lod[-1]) transition = np.repeat( np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM), TAG_NUM + 2, axis=0, ) emission = np.repeat( np.arange(TAG_NUM, dtype="float64").reshape(1, TAG_NUM), total_len, axis=0, ) labels = np.random.randint( low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64" ) predicted_labels = np.ones((total_len, 1), dtype="int64") * ( TAG_NUM - 1 ) expected_output = (labels == predicted_labels).astype("int64") self.inputs = { "Emission": seq_pad(emission, self.lod[0]), "Transition": transition, "Label": seq_pad(labels, self.lod[0]), "Length": np.array(self.lod).astype('int64'), } self.outputs = {"ViterbiPath": seq_pad(expected_output, self.lod[0])} def test_check_output(self): self.check_output() if __name__ == "__main__": unittest.main()