dist_transformer.py 61.9 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import time
G
gongweibao 已提交
17
import os
18
import functools
G
gongweibao 已提交
19 20 21 22 23 24
import time
from functools import partial
from os.path import expanduser
import glob
import random
import tarfile
X
Xin Pan 已提交
25 26

import paddle.fluid as fluid
G
gongweibao 已提交
27
import paddle.fluid.layers as layers
G
gongweibao 已提交
28
from test_dist_base import TestDistRunnerBase, runtime_main, RUN_STEP
G
gongweibao 已提交
29 30 31

const_para_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(0.001))
const_bias_attr = const_para_attr
X
Xin Pan 已提交
32 33 34 35 36 37

# Fix seed for test
fluid.default_startup_program().random_seed = 1
fluid.default_main_program().random_seed = 1


38
# from transformer_config import ModelHyperParams, TrainTaskConfig, merge_cfg_from_list
39
class TrainTaskConfig:
G
gongweibao 已提交
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
    # only support GPU currently
    use_gpu = True
    # the epoch number to train.
    pass_num = 1
    # the number of sequences contained in a mini-batch.
    # deprecated, set batch_size in args.
    batch_size = 20
    # the hyper parameters for Adam optimizer.
    # This static learning_rate will be multiplied to the LearningRateScheduler
    # derived learning rate the to get the final learning rate.
    learning_rate = 1
    beta1 = 0.9
    beta2 = 0.98
    eps = 1e-9
    # the parameters for learning rate scheduling.
    warmup_steps = 4000
    # the weight used to mix up the ground-truth distribution and the fixed
    # uniform distribution in label smoothing when training.
    # Set this as zero if label smoothing is not wanted.
    label_smooth_eps = 0.1
    # the directory for saving trained models.
    model_dir = "trained_models"
    # the directory for saving checkpoints.
    ckpt_dir = "trained_ckpts"
    # the directory for loading checkpoint.
    # If provided, continue training from the checkpoint.
    ckpt_path = None
    # the parameter to initialize the learning rate scheduler.
    # It should be provided if use checkpoints, since the checkpoint doesn't
    # include the training step counter currently.
    start_step = 0
X
Xin Pan 已提交
71

G
gongweibao 已提交
72
    check_acc = True
X
Xin Pan 已提交
73

G
gongweibao 已提交
74
    data_path = expanduser("~") + (
75 76
        "/.cache/paddle/dataset/test_dist_transformer/"
    )
G
gongweibao 已提交
77 78 79
    src_vocab_fpath = data_path + "vocab.bpe.32000"
    trg_vocab_fpath = data_path + "vocab.bpe.32000"
    train_file_pattern = data_path + "train.tok.clean.bpe.32000.en-de"
W
Wu Yi 已提交
80
    val_file_pattern = data_path + "newstest2013.tok.bpe.32000.en-de.cut"
G
gongweibao 已提交
81 82 83 84 85 86 87 88
    pool_size = 2000
    sort_type = None
    local = True
    shuffle = False
    shuffle_batch = False
    special_token = ['<s>', '<e>', '<unk>']
    token_delimiter = ' '
    use_token_batch = False
X
Xin Pan 已提交
89 90


91
class InferTaskConfig:
G
gongweibao 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105
    use_gpu = True
    # the number of examples in one run for sequence generation.
    batch_size = 10
    # the parameters for beam search.
    beam_size = 5
    max_out_len = 256
    # the number of decoded sentences to output.
    n_best = 1
    # the flags indicating whether to output the special tokens.
    output_bos = False
    output_eos = False
    output_unk = True
    # the directory for loading the trained model.
    model_path = "trained_models/pass_1.infer.model"
X
Xin Pan 已提交
106 107


108
class ModelHyperParams:
G
gongweibao 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    # These following five vocabularies related configurations will be set
    # automatically according to the passed vocabulary path and special tokens.
    # size of source word dictionary.
    src_vocab_size = 10000
    # size of target word dictionay
    trg_vocab_size = 10000
    # index for <bos> token
    bos_idx = 0
    # index for <eos> token
    eos_idx = 1
    # index for <unk> token
    unk_idx = 2
    # max length of sequences deciding the size of position encoding table.
    # Start from 1 and count start and end tokens in.
    max_length = 256
X
Xin Pan 已提交
124 125 126 127 128
    # the dimension for word embeddings, which is also the last dimension of
    # the input and output of multi-head attention, position-wise feed-forward
    # networks, encoder and decoder.
    d_model = 512
    # size of the hidden layer in position-wise feed-forward networks.
G
gongweibao 已提交
129
    d_inner_hid = 2048
X
Xin Pan 已提交
130 131 132 133 134 135 136 137 138
    # the dimension that keys are projected to for dot-product attention.
    d_key = 64
    # the dimension that values are projected to for dot-product attention.
    d_value = 64
    # number of head used in multi-head attention.
    n_head = 8
    # number of sub-layers to be stacked in the encoder and decoder.
    n_layer = 6
    # dropout rate used by all dropout layers.
G
gongweibao 已提交
139 140 141 142 143 144
    dropout = 0.0  # no random
    # random seed used in dropout for CE.
    dropout_seed = None
    # the flag indicating whether to share embedding and softmax weights.
    # vocabularies in source and target should be same for weight sharing.
    weight_sharing = True
X
Xin Pan 已提交
145 146


G
gongweibao 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
def merge_cfg_from_list(cfg_list, g_cfgs):
    """
    Set the above global configurations using the cfg_list.
    """
    assert len(cfg_list) % 2 == 0
    for key, value in zip(cfg_list[0::2], cfg_list[1::2]):
        for g_cfg in g_cfgs:
            if hasattr(g_cfg, key):
                try:
                    value = eval(value)
                except Exception:  # for file path
                    pass
                setattr(g_cfg, key, value)
                break


# The placeholder for batch_size in compile time. Must be -1 currently to be
# consistent with some ops' infer-shape output in compile time, such as the
# sequence_expand op used in beamsearch decoder.
batch_size = -1
# The placeholder for squence length in compile time.
seq_len = ModelHyperParams.max_length
# Here list the data shapes and data types of all inputs.
# The shapes here act as placeholder and are set to pass the infer-shape in
# compile time.
input_descs = {
    # The actual data shape of src_word is:
    # [batch_size * max_src_len_in_batch, 1]
175
    "src_word": [(batch_size, seq_len, 1), "int64", 2],
G
gongweibao 已提交
176 177
    # The actual data shape of src_pos is:
    # [batch_size * max_src_len_in_batch, 1]
178
    "src_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
179 180 181 182
    # This input is used to remove attention weights on paddings in the
    # encoder.
    # The actual data shape of src_slf_attn_bias is:
    # [batch_size, n_head, max_src_len_in_batch, max_src_len_in_batch]
183 184 185 186
    "src_slf_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
187 188
    # The actual data shape of trg_word is:
    # [batch_size * max_trg_len_in_batch, 1]
189 190 191 192 193
    "trg_word": [
        (batch_size, seq_len, 1),
        "int64",
        2,
    ],  # lod_level is only used in fast decoder.
G
gongweibao 已提交
194 195
    # The actual data shape of trg_pos is:
    # [batch_size * max_trg_len_in_batch, 1]
196
    "trg_pos": [(batch_size, seq_len, 1), "int64"],
G
gongweibao 已提交
197 198 199 200
    # This input is used to remove attention weights on paddings and
    # subsequent words in the decoder.
    # The actual data shape of trg_slf_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_trg_len_in_batch]
201 202 203 204
    "trg_slf_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
205 206 207 208
    # This input is used to remove attention weights on paddings of the source
    # input in the encoder-decoder attention.
    # The actual data shape of trg_src_attn_bias is:
    # [batch_size, n_head, max_trg_len_in_batch, max_src_len_in_batch]
209 210 211 212
    "trg_src_attn_bias": [
        (batch_size, ModelHyperParams.n_head, seq_len, seq_len),
        "float32",
    ],
G
gongweibao 已提交
213 214 215 216 217 218
    # This input is used in independent decoder program for inference.
    # The actual data shape of enc_output is:
    # [batch_size, max_src_len_in_batch, d_model]
    "enc_output": [(batch_size, seq_len, ModelHyperParams.d_model), "float32"],
    # The actual data shape of label_word is:
    # [batch_size * max_trg_len_in_batch, 1]
219
    "lbl_word": [(batch_size * seq_len, 1), "int64"],
T
tianshuo78520a 已提交
220
    # This input is used to mask out the loss of padding tokens.
G
gongweibao 已提交
221 222
    # The actual data shape of label_weight is:
    # [batch_size * max_trg_len_in_batch, 1]
223
    "lbl_weight": [(batch_size * seq_len, 1), "float32"],
G
gongweibao 已提交
224
    # These inputs are used to change the shape tensor in beam-search decoder.
225 226
    "trg_slf_attn_pre_softmax_shape_delta": [(2,), "int32"],
    "trg_slf_attn_post_softmax_shape_delta": [(4,), "int32"],
227
    "init_score": [(batch_size, 1), "float32"],
G
gongweibao 已提交
228 229 230 231 232
}

# Names of word embedding table which might be reused for weight sharing.
word_emb_param_names = (
    "src_word_emb_table",
233 234
    "trg_word_emb_table",
)
G
gongweibao 已提交
235 236 237
# Names of position encoding table which will be initialized externally.
pos_enc_param_names = (
    "src_pos_enc_table",
238 239
    "trg_pos_enc_table",
)
G
gongweibao 已提交
240 241 242 243
# separated inputs for different usages.
encoder_data_input_fields = (
    "src_word",
    "src_pos",
244 245
    "src_slf_attn_bias",
)
G
gongweibao 已提交
246 247 248 249 250
decoder_data_input_fields = (
    "trg_word",
    "trg_pos",
    "trg_slf_attn_bias",
    "trg_src_attn_bias",
251 252
    "enc_output",
)
G
gongweibao 已提交
253 254
label_data_input_fields = (
    "lbl_word",
255 256
    "lbl_weight",
)
G
gongweibao 已提交
257 258 259 260 261
# In fast decoder, trg_pos (only containing the current time step) is generated
# by ops and trg_slf_attn_bias is not needed.
fast_decoder_data_input_fields = (
    "trg_word",
    "init_score",
262 263
    "trg_src_attn_bias",
)
G
gongweibao 已提交
264 265 266 267 268 269

# fast_decoder_util_input_fields = (
#     "trg_slf_attn_pre_softmax_shape_delta",
#     "trg_slf_attn_post_softmax_shape_delta", )


270
# from optim import LearningRateScheduler
271
class LearningRateScheduler:
G
gongweibao 已提交
272 273 274
    """
    Wrapper for learning rate scheduling as described in the Transformer paper.
    LearningRateScheduler adapts the learning rate externally and the adapted
T
tianshuo78520a 已提交
275
    learning rate will be fed into the main_program as input data.
G
gongweibao 已提交
276 277
    """

278 279 280 281 282 283 284 285
    def __init__(
        self,
        d_model,
        warmup_steps,
        learning_rate=0.001,
        current_steps=0,
        name="learning_rate",
    ):
G
gongweibao 已提交
286 287 288 289 290 291 292 293 294
        self.current_steps = current_steps
        self.warmup_steps = warmup_steps
        self.d_model = d_model
        self.static_lr = learning_rate
        self.learning_rate = layers.create_global_var(
            name=name,
            shape=[1],
            value=float(learning_rate),
            dtype="float32",
295 296
            persistable=True,
        )
G
gongweibao 已提交
297 298 299

    def update_learning_rate(self):
        self.current_steps += 1
300 301 302 303 304 305 306 307 308 309
        lr_value = (
            np.power(self.d_model, -0.5)
            * np.min(
                [
                    np.power(self.current_steps, -0.5),
                    np.power(self.warmup_steps, -1.5) * self.current_steps,
                ]
            )
            * self.static_lr
        )
G
gongweibao 已提交
310 311 312
        return np.array([lr_value], dtype="float32")


313 314 315 316 317 318 319 320 321 322 323
# from transformer_train import train_loop
def pad_batch_data(
    insts,
    pad_idx,
    n_head,
    is_target=False,
    is_label=False,
    return_attn_bias=True,
    return_max_len=True,
    return_num_token=False,
):
X
Xin Pan 已提交
324 325
    """
    Pad the instances to the max sequence length in batch, and generate the
G
gongweibao 已提交
326
    corresponding position data and attention bias.
X
Xin Pan 已提交
327
    """
G
gongweibao 已提交
328 329
    return_list = []
    max_len = max(len(inst) for inst in insts)
330 331 332 333 334
    num_token = (
        functools.reduce(lambda x, y: x + y, [len(inst) for inst in insts])
        if return_num_token
        else 0
    )
G
gongweibao 已提交
335 336 337
    # Any token included in dict can be used to pad, since the paddings' loss
    # will be masked out by weights and make no effect on parameter gradients.
    inst_data = np.array(
338 339
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]
    )
G
gongweibao 已提交
340 341
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if is_label:  # label weight
342 343 344 345 346 347
        inst_weight = np.array(
            [
                [1.0] * len(inst) + [0.0] * (max_len - len(inst))
                for inst in insts
            ]
        )
G
gongweibao 已提交
348 349
        return_list += [inst_weight.astype("float32").reshape([-1, 1])]
    else:  # position data
350 351 352 353 354 355
        inst_pos = np.array(
            [
                list(range(1, len(inst) + 1)) + [0] * (max_len - len(inst))
                for inst in insts
            ]
        )
G
gongweibao 已提交
356 357 358 359 360 361
        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
362 363 364 365 366 367
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len]
            )
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data, [1, n_head, 1, 1]
            ) * [-1e9]
G
gongweibao 已提交
368 369
        else:
            # This is used to avoid attention on paddings.
370 371 372 373 374 375
            slf_attn_bias_data = np.array(
                [
                    [0] * len(inst) + [-1e9] * (max_len - len(inst))
                    for inst in insts
                ]
            )
G
gongweibao 已提交
376 377
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
378 379
                [1, n_head, max_len, 1],
            )
G
gongweibao 已提交
380 381 382 383 384 385 386 387
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    if return_num_token:
        return_list += [num_token]
    return return_list if len(return_list) > 1 else return_list[0]


388 389 390
def prepare_batch_input(
    insts, data_input_names, src_pad_idx, trg_pad_idx, n_head, d_model
):
G
gongweibao 已提交
391 392 393 394
    """
    Put all padded data needed by training into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
395 396
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False
    )
G
gongweibao 已提交
397 398 399
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
400 401
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True
    )
G
gongweibao 已提交
402 403
    trg_word = trg_word.reshape(-1, trg_max_len, 1)
    trg_pos = trg_pos.reshape(-1, trg_max_len, 1)
X
Xin Pan 已提交
404

405 406 407
    trg_src_attn_bias = np.tile(
        src_slf_attn_bias[:, :, ::src_max_len, :], [1, 1, trg_max_len, 1]
    ).astype("float32")
X
Xin Pan 已提交
408

G
gongweibao 已提交
409 410 411 412 413 414 415 416
    lbl_word, lbl_weight, num_token = pad_batch_data(
        [inst[2] for inst in insts],
        trg_pad_idx,
        n_head,
        is_target=False,
        is_label=True,
        return_attn_bias=False,
        return_max_len=False,
417 418
        return_num_token=True,
    )
G
gongweibao 已提交
419 420

    data_input_dict = dict(
M
minqiyang 已提交
421
        list(
422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437
            zip(
                data_input_names,
                [
                    src_word,
                    src_pos,
                    src_slf_attn_bias,
                    trg_word,
                    trg_pos,
                    trg_slf_attn_bias,
                    trg_src_attn_bias,
                    lbl_word,
                    lbl_weight,
                ],
            )
        )
    )
G
gongweibao 已提交
438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461
    return data_input_dict, np.asarray([num_token], dtype="float32")


def read_multiple(reader, count, clip_last=True):
    """
    Stack data from reader for multi-devices.
    """

    def __impl__():
        res = []
        for item in reader():
            res.append(item)
            if len(res) == count:
                yield res
                res = []
        if len(res) == count:
            yield res
        elif not clip_last:
            data = []
            for item in res:
                data += item
            if len(data) > count:
                inst_num_per_part = len(data) // count
                yield [
462
                    data[inst_num_per_part * i : inst_num_per_part * (i + 1)]
G
gongweibao 已提交
463 464 465 466 467 468 469 470 471 472 473 474 475 476
                    for i in range(count)
                ]

    return __impl__


def split_data(data, num_part):
    """
    Split data for each device.
    """
    if len(data) == num_part:
        return data
    data = data[0]
    inst_num_per_part = len(data) // num_part
X
Xin Pan 已提交
477
    return [
478
        data[inst_num_per_part * i : inst_num_per_part * (i + 1)]
G
gongweibao 已提交
479
        for i in range(num_part)
X
Xin Pan 已提交
480 481 482
    ]


483 484 485 486 487 488 489 490 491
def test_context(
    test_program,
    avg_cost,
    train_exe,
    dev_count,
    data_input_names,
    sum_cost,
    token_num,
):
G
gongweibao 已提交
492 493 494 495 496 497
    val_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.val_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
498 499
        batch_size=TrainTaskConfig.batch_size
        * (1 if TrainTaskConfig.use_token_batch else dev_count),
G
gongweibao 已提交
500 501 502 503 504 505 506 507 508
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
        clip_last_batch=False,
        shuffle=False,
509 510
        shuffle_batch=False,
    )
G
gongweibao 已提交
511 512 513 514 515 516

    build_strategy = fluid.BuildStrategy()

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

517 518 519 520 521 522 523
    test_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=test_program,
        share_vars_from=train_exe,
        build_strategy=build_strategy,
        exec_strategy=strategy,
    )
G
gongweibao 已提交
524 525 526 527 528 529

    def test(exe=test_exe):
        test_total_cost = 0
        test_total_token = 0
        test_data = read_multiple(
            reader=val_data.batch_generator,
530 531
            count=dev_count if TrainTaskConfig.use_token_batch else 1,
        )
G
gongweibao 已提交
532 533 534
        for batch_id, data in enumerate(test_data()):
            feed_list = []
            for place_id, data_buffer in enumerate(
535 536
                split_data(data, num_part=dev_count)
            ):
G
gongweibao 已提交
537
                data_input_dict, _ = prepare_batch_input(
538 539 540 541 542 543 544
                    data_buffer,
                    data_input_names,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_model,
                )
G
gongweibao 已提交
545 546
                feed_list.append(data_input_dict)

547 548 549
            outs = exe.run(
                feed=feed_list, fetch_list=[sum_cost.name, token_num.name]
            )
G
gongweibao 已提交
550 551 552 553 554 555 556 557 558 559
            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            test_total_cost += sum_cost_val.sum()
            test_total_token += token_num_val.sum()
        test_avg_cost = test_total_cost / test_total_token
        test_ppl = np.exp([min(test_avg_cost, 100)])
        return test_avg_cost, test_ppl

    return test


560 561 562 563 564 565 566 567 568 569 570
def train_loop(
    exe,
    train_progm,
    dev_count,
    sum_cost,
    avg_cost,
    lr_scheduler,
    token_num,
    predict,
    test_program,
):
G
gongweibao 已提交
571 572 573 574 575 576 577 578 579 580 581 582
    # Initialize the parameters.
    if TrainTaskConfig.ckpt_path:
        lr_scheduler.current_steps = TrainTaskConfig.start_step
    else:
        exe.run(fluid.framework.default_startup_program())

    train_data = DataReader(
        src_vocab_fpath=TrainTaskConfig.src_vocab_fpath,
        trg_vocab_fpath=TrainTaskConfig.trg_vocab_fpath,
        fpattern=TrainTaskConfig.train_file_pattern,
        token_delimiter=TrainTaskConfig.token_delimiter,
        use_token_batch=TrainTaskConfig.use_token_batch,
583 584
        batch_size=TrainTaskConfig.batch_size
        * (1 if TrainTaskConfig.use_token_batch else dev_count),
G
gongweibao 已提交
585 586 587 588 589 590 591 592 593
        pool_size=TrainTaskConfig.pool_size,
        sort_type=TrainTaskConfig.sort_type,
        shuffle=TrainTaskConfig.shuffle,
        shuffle_batch=TrainTaskConfig.shuffle_batch,
        start_mark=TrainTaskConfig.special_token[0],
        end_mark=TrainTaskConfig.special_token[1],
        unk_mark=TrainTaskConfig.special_token[2],
        # count start and end tokens out
        max_length=ModelHyperParams.max_length - 2,
594 595
        clip_last_batch=False,
    )
G
gongweibao 已提交
596 597
    train_data = read_multiple(
        reader=train_data.batch_generator,
598 599
        count=dev_count if TrainTaskConfig.use_token_batch else 1,
    )
G
gongweibao 已提交
600 601 602 603 604

    build_strategy = fluid.BuildStrategy()
    # Since the token number differs among devices, customize gradient scale to
    # use token average cost among multi-devices. and the gradient scale is
    # `1 / token_number` for average cost.
605 606 607
    build_strategy.gradient_scale_strategy = (
        fluid.BuildStrategy.GradientScaleStrategy.Customized
    )
G
gongweibao 已提交
608 609 610 611

    strategy = fluid.ExecutionStrategy()
    strategy.num_threads = 1

612 613 614 615 616 617 618
    train_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        loss_name=sum_cost.name,
        main_program=train_progm,
        build_strategy=build_strategy,
        exec_strategy=strategy,
    )
G
gongweibao 已提交
619

620 621 622 623 624
    data_input_names = (
        encoder_data_input_fields
        + decoder_data_input_fields[:-1]
        + label_data_input_fields
    )
G
gongweibao 已提交
625 626

    if TrainTaskConfig.val_file_pattern is not None:
627 628 629 630 631 632 633 634 635
        test = test_context(
            test_program,
            avg_cost,
            train_exe,
            dev_count,
            data_input_names,
            sum_cost,
            token_num,
        )
G
gongweibao 已提交
636 637

    # the best cross-entropy value with label smoothing
638 639 640 641 642 643 644 645 646 647
    loss_normalizer = -(
        (1.0 - TrainTaskConfig.label_smooth_eps)
        * np.log((1.0 - TrainTaskConfig.label_smooth_eps))
        + TrainTaskConfig.label_smooth_eps
        * np.log(
            TrainTaskConfig.label_smooth_eps
            / (ModelHyperParams.trg_vocab_size - 1)
            + 1e-20
        )
    )
G
gongweibao 已提交
648
    init = False
649
    for pass_id in range(TrainTaskConfig.pass_num):
G
gongweibao 已提交
650 651
        pass_start_time = time.time()
        for batch_id, data in enumerate(train_data()):
G
gongweibao 已提交
652
            if batch_id >= RUN_STEP:
G
gongweibao 已提交
653 654 655 656 657 658 659 660 661
                break

            feed_list = []
            total_num_token = 0

            if TrainTaskConfig.local:
                lr_rate = lr_scheduler.update_learning_rate()

            for place_id, data_buffer in enumerate(
662 663
                split_data(data, num_part=dev_count)
            ):
G
gongweibao 已提交
664
                data_input_dict, num_token = prepare_batch_input(
665 666 667 668 669 670 671
                    data_buffer,
                    data_input_names,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.eos_idx,
                    ModelHyperParams.n_head,
                    ModelHyperParams.d_model,
                )
G
gongweibao 已提交
672
                total_num_token += num_token
M
minqiyang 已提交
673
                feed_kv_pairs = list(data_input_dict.items())
G
gongweibao 已提交
674
                if TrainTaskConfig.local:
675
                    feed_kv_pairs += list(
676 677
                        {lr_scheduler.learning_rate.name: lr_rate}.items()
                    )
G
gongweibao 已提交
678 679 680 681 682 683
                feed_list.append(dict(feed_kv_pairs))

                if not init:
                    for pos_enc_param_name in pos_enc_param_names:
                        pos_enc = position_encoding_init(
                            ModelHyperParams.max_length + 1,
684 685
                            ModelHyperParams.d_model,
                        )
G
gongweibao 已提交
686 687 688 689
                        feed_list[place_id][pos_enc_param_name] = pos_enc

            if not TrainTaskConfig.check_acc:
                for feed_dict in feed_list:
690
                    feed_dict[sum_cost.name + "@GRAD"] = 1.0 / total_num_token
G
gongweibao 已提交
691 692 693 694
            else:
                b = 100 * TrainTaskConfig.batch_size
                a = np.asarray([b], dtype="float32")
                for feed_dict in feed_list:
695
                    feed_dict[sum_cost.name + "@GRAD"] = 1.0 / a
G
gongweibao 已提交
696

697 698 699
            outs = train_exe.run(
                fetch_list=[sum_cost.name, token_num.name], feed=feed_list
            )
G
gongweibao 已提交
700 701 702 703 704 705 706 707 708

            sum_cost_val, token_num_val = np.array(outs[0]), np.array(outs[1])
            total_sum_cost = sum_cost_val.sum()
            total_token_num = token_num_val.sum()
            total_avg_cost = total_sum_cost / total_token_num

            init = True

            # Validate and save the model for inference.
G
gongweibao 已提交
709 710 711 712
            if TrainTaskConfig.val_file_pattern is not None:
                val_avg_cost, val_ppl = test()
                print("[%f]" % val_avg_cost)
            else:
713
                assert False
G
gongweibao 已提交
714 715


716
# import transformer_reader as reader
717
class SortType:
G
gongweibao 已提交
718 719 720 721 722
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"


723
class Converter:
G
gongweibao 已提交
724 725 726 727 728 729 730 731
    def __init__(self, vocab, beg, end, unk, delimiter):
        self._vocab = vocab
        self._beg = beg
        self._end = end
        self._unk = unk
        self._delimiter = delimiter

    def __call__(self, sentence):
732 733 734 735 736 737 738 739
        return (
            [self._beg]
            + [
                self._vocab.get(w, self._unk)
                for w in sentence.split(self._delimiter)
            ]
            + [self._end]
        )
G
gongweibao 已提交
740 741


742
class ComposedConverter:
G
gongweibao 已提交
743 744 745 746 747 748 749 750 751 752
    def __init__(self, converters):
        self._converters = converters

    def __call__(self, parallel_sentence):
        return [
            self._converters[i](parallel_sentence[i])
            for i in range(len(self._converters))
        ]


753
class SentenceBatchCreator:
G
gongweibao 已提交
754 755 756 757 758 759 760 761 762 763 764 765
    def __init__(self, batch_size):
        self.batch = []
        self._batch_size = batch_size

    def append(self, info):
        self.batch.append(info)
        if len(self.batch) == self._batch_size:
            tmp = self.batch
            self.batch = []
            return tmp


766
class TokenBatchCreator:
G
gongweibao 已提交
767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784
    def __init__(self, batch_size):
        self.batch = []
        self.max_len = -1
        self._batch_size = batch_size

    def append(self, info):
        cur_len = info.max_len
        max_len = max(self.max_len, cur_len)
        if max_len * (len(self.batch) + 1) > self._batch_size:
            result = self.batch
            self.batch = [info]
            self.max_len = cur_len
            return result
        else:
            self.max_len = max_len
            self.batch.append(info)


785
class SampleInfo:
G
gongweibao 已提交
786 787 788 789 790 791
    def __init__(self, i, max_len, min_len):
        self.i = i
        self.min_len = min_len
        self.max_len = max_len


792
class MinMaxFilter:
G
gongweibao 已提交
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808
    def __init__(self, max_len, min_len, underlying_creator):
        self._min_len = min_len
        self._max_len = max_len
        self._creator = underlying_creator

    def append(self, info):
        if info.max_len > self._max_len or info.min_len < self._min_len:
            return
        else:
            return self._creator.append(info)

    @property
    def batch(self):
        return self._creator.batch


809
class DataReader:
G
gongweibao 已提交
810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881
    """
    The data reader loads all data from files and produces batches of data
    in the way corresponding to settings.

    An example of returning a generator producing data batches whose data
    is shuffled in each pass and sorted in each pool:

    ```
    train_data = DataReader(
        src_vocab_fpath='data/src_vocab_file',
        trg_vocab_fpath='data/trg_vocab_file',
        fpattern='data/part-*',
        use_token_batch=True,
        batch_size=2000,
        pool_size=10000,
        sort_type=SortType.POOL,
        shuffle=True,
        shuffle_batch=True,
        start_mark='<s>',
        end_mark='<e>',
        unk_mark='<unk>',
        clip_last_batch=False).batch_generator
    ```

    :param src_vocab_fpath: The path of vocabulary file of source language.
    :type src_vocab_fpath: basestring
    :param trg_vocab_fpath: The path of vocabulary file of target language.
    :type trg_vocab_fpath: basestring
    :param fpattern: The pattern to match data files.
    :type fpattern: basestring
    :param batch_size: The number of sequences contained in a mini-batch.
        or the maximum number of tokens (include paddings) contained in a
        mini-batch.
    :type batch_size: int
    :param pool_size: The size of pool buffer.
    :type pool_size: int
    :param sort_type: The grain to sort by length: 'global' for all
        instances; 'pool' for instances in pool; 'none' for no sort.
    :type sort_type: basestring
    :param clip_last_batch: Whether to clip the last uncompleted batch.
    :type clip_last_batch: bool
    :param tar_fname: The data file in tar if fpattern matches a tar file.
    :type tar_fname: basestring
    :param min_length: The minimum length used to filt sequences.
    :type min_length: int
    :param max_length: The maximum length used to filt sequences.
    :type max_length: int
    :param shuffle: Whether to shuffle all instances.
    :type shuffle: bool
    :param shuffle_batch: Whether to shuffle the generated batches.
    :type shuffle_batch: bool
    :param use_token_batch: Whether to produce batch data according to
        token number.
    :type use_token_batch: bool
    :param field_delimiter: The delimiter used to split source and target in
        each line of data file.
    :type field_delimiter: basestring
    :param token_delimiter: The delimiter used to split tokens in source or
        target sentences.
    :type token_delimiter: basestring
    :param start_mark: The token representing for the beginning of
        sentences in dictionary.
    :type start_mark: basestring
    :param end_mark: The token representing for the end of sentences
        in dictionary.
    :type end_mark: basestring
    :param unk_mark: The token representing for unknown word in dictionary.
    :type unk_mark: basestring
    :param seed: The seed for random.
    :type seed: int
    """

882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903
    def __init__(
        self,
        src_vocab_fpath,
        trg_vocab_fpath,
        fpattern,
        batch_size,
        pool_size,
        sort_type=SortType.GLOBAL,
        clip_last_batch=True,
        tar_fname=None,
        min_length=0,
        max_length=100,
        shuffle=True,
        shuffle_batch=False,
        use_token_batch=False,
        field_delimiter="\t",
        token_delimiter=" ",
        start_mark="<s>",
        end_mark="<e>",
        unk_mark="<unk>",
        seed=0,
    ):
G
gongweibao 已提交
904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
        self._src_vocab = self.load_dict(src_vocab_fpath)
        self._only_src = True
        if trg_vocab_fpath is not None:
            self._trg_vocab = self.load_dict(trg_vocab_fpath)
            self._only_src = False
        self._pool_size = pool_size
        self._batch_size = batch_size
        self._use_token_batch = use_token_batch
        self._sort_type = sort_type
        self._clip_last_batch = clip_last_batch
        self._shuffle = shuffle
        self._shuffle_batch = shuffle_batch
        self._min_length = min_length
        self._max_length = max_length
        self._field_delimiter = field_delimiter
        self._token_delimiter = token_delimiter
920 921 922
        self.load_src_trg_ids(
            end_mark, fpattern, start_mark, tar_fname, unk_mark
        )
G
gongweibao 已提交
923 924
        self._random = random.Random(x=seed)

925 926 927
    def load_src_trg_ids(
        self, end_mark, fpattern, start_mark, tar_fname, unk_mark
    ):
G
gongweibao 已提交
928
        converters = [
929 930 931 932 933 934 935
            Converter(
                vocab=self._src_vocab,
                beg=self._src_vocab[start_mark],
                end=self._src_vocab[end_mark],
                unk=self._src_vocab[unk_mark],
                delimiter=self._token_delimiter,
            )
G
gongweibao 已提交
936 937 938
        ]
        if not self._only_src:
            converters.append(
939 940 941 942 943 944 945 946
                Converter(
                    vocab=self._trg_vocab,
                    beg=self._trg_vocab[start_mark],
                    end=self._trg_vocab[end_mark],
                    unk=self._trg_vocab[unk_mark],
                    delimiter=self._token_delimiter,
                )
            )
G
gongweibao 已提交
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971

        converters = ComposedConverter(converters)

        self._src_seq_ids = []
        self._trg_seq_ids = None if self._only_src else []
        self._sample_infos = []

        for i, line in enumerate(self._load_lines(fpattern, tar_fname)):
            src_trg_ids = converters(line)
            self._src_seq_ids.append(src_trg_ids[0])
            lens = [len(src_trg_ids[0])]
            if not self._only_src:
                self._trg_seq_ids.append(src_trg_ids[1])
                lens.append(len(src_trg_ids[1]))
            self._sample_infos.append(SampleInfo(i, max(lens), min(lens)))

    def _load_lines(self, fpattern, tar_fname):
        fpaths = glob.glob(fpattern)

        if len(fpaths) == 1 and tarfile.is_tarfile(fpaths[0]):
            if tar_fname is None:
                raise Exception("If tar file provided, please set tar_fname.")

            f = tarfile.open(fpaths[0], "r")
            for line in f.extractfile(tar_fname):
972
                line = line.decode()
G
gongweibao 已提交
973
                fields = line.strip("\n").split(self._field_delimiter)
974 975 976
                if (not self._only_src and len(fields) == 2) or (
                    self._only_src and len(fields) == 1
                ):
G
gongweibao 已提交
977 978 979 980 981 982
                    yield fields
        else:
            for fpath in fpaths:
                if not os.path.isfile(fpath):
                    raise IOError("Invalid file: %s" % fpath)

M
minqiyang 已提交
983
                with open(fpath, "rb") as f:
G
gongweibao 已提交
984
                    for line in f:
985
                        line = line.decode()
G
gongweibao 已提交
986
                        fields = line.strip("\n").split(self._field_delimiter)
987 988 989
                        if (not self._only_src and len(fields) == 2) or (
                            self._only_src and len(fields) == 1
                        ):
G
gongweibao 已提交
990 991 992 993 994
                            yield fields

    @staticmethod
    def load_dict(dict_path, reverse=False):
        word_dict = {}
M
minqiyang 已提交
995
        with open(dict_path, "rb") as fdict:
G
gongweibao 已提交
996
            for idx, line in enumerate(fdict):
997
                line = line.decode()
G
gongweibao 已提交
998 999 1000 1001 1002 1003 1004 1005 1006
                if reverse:
                    word_dict[idx] = line.strip("\n")
                else:
                    word_dict[line.strip("\n")] = idx
        return word_dict

    def batch_generator(self):
        # global sort or global shuffle
        if self._sort_type == SortType.GLOBAL:
1007 1008 1009
            infos = sorted(
                self._sample_infos, key=lambda x: x.max_len, reverse=True
            )
G
gongweibao 已提交
1010 1011 1012 1013 1014 1015 1016 1017 1018
        else:
            if self._shuffle:
                infos = self._sample_infos
                self._random.shuffle(infos)
            else:
                infos = self._sample_infos

            if self._sort_type == SortType.POOL:
                for i in range(0, len(infos), self._pool_size):
1019 1020 1021
                    infos[i : i + self._pool_size] = sorted(
                        infos[i : i + self._pool_size], key=lambda x: x.max_len
                    )
G
gongweibao 已提交
1022 1023 1024

        # concat batch
        batches = []
1025 1026 1027 1028 1029 1030 1031 1032
        batch_creator = (
            TokenBatchCreator(self._batch_size)
            if self._use_token_batch
            else SentenceBatchCreator(self._batch_size)
        )
        batch_creator = MinMaxFilter(
            self._max_length, self._min_length, batch_creator
        )
G
gongweibao 已提交
1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050

        for info in infos:
            batch = batch_creator.append(info)
            if batch is not None:
                batches.append(batch)

        if not self._clip_last_batch and len(batch_creator.batch) != 0:
            batches.append(batch_creator.batch)

        if self._shuffle_batch:
            self._random.shuffle(batches)

        for batch in batches:
            batch_ids = [info.i for info in batch]

            if self._only_src:
                yield [[self._src_seq_ids[idx]] for idx in batch_ids]
            else:
1051 1052 1053 1054 1055 1056 1057 1058
                yield [
                    (
                        self._src_seq_ids[idx],
                        self._trg_seq_ids[idx][:-1],
                        self._trg_seq_ids[idx][1:],
                    )
                    for idx in batch_ids
                ]
G
gongweibao 已提交
1059 1060


1061
# from transformer_model import transformer
G
gongweibao 已提交
1062 1063 1064 1065
def position_encoding_init(n_position, d_pos_vec):
    """
    Generate the initial values for the sinusoid position encoding table.
    """
1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
    position_enc = np.array(
        [
            [
                pos / np.power(10000, 2 * (j // 2) / d_pos_vec)
                for j in range(d_pos_vec)
            ]
            if pos != 0
            else np.zeros(d_pos_vec)
            for pos in range(n_position)
        ]
    )
G
gongweibao 已提交
1077 1078 1079 1080 1081
    position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2])  # dim 2i
    position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2])  # dim 2i+1
    return position_enc.astype("float32")


1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093
def multi_head_attention(
    queries,
    keys,
    values,
    attn_bias,
    d_key,
    d_value,
    d_model,
    n_head=1,
    dropout_rate=0.0,
    cache=None,
):
G
gongweibao 已提交
1094 1095 1096 1097 1098 1099 1100
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
1101 1102
            "Inputs: queries, keys and values should all be 3-D tensors."
        )
G
gongweibao 已提交
1103 1104 1105 1106 1107

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128
        q = layers.fc(
            input=queries,
            size=d_key * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
        k = layers.fc(
            input=keys,
            size=d_key * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
        v = layers.fc(
            input=values,
            size=d_value * n_head,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
G
gongweibao 已提交
1129 1130 1131 1132
        return q, k, v

    def __split_heads(x, n_head):
        """
T
tianshuo78520a 已提交
1133
        Reshape the last dimension of input tensor x so that it becomes two
G
gongweibao 已提交
1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        if n_head == 1:
            return x

        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
1144 1145 1146
        reshaped = layers.reshape(
            x=x, shape=[0, 0, n_head, hidden_size // n_head]
        )
G
gongweibao 已提交
1147

T
tianshuo78520a 已提交
1148
        # permute the dimensions into:
G
gongweibao 已提交
1149 1150 1151 1152 1153
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
T
tianshuo78520a 已提交
1154
        Transpose and then reshape the last two dimensions of input tensor x
G
gongweibao 已提交
1155 1156
        so that it becomes one dimension, which is reverse to __split_heads.
        """
1157 1158
        if len(x.shape) == 3:
            return x
G
gongweibao 已提交
1159 1160 1161 1162 1163 1164 1165 1166
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        return layers.reshape(
            x=trans_x,
1167 1168
            shape=list(map(int, [0, 0, trans_x.shape[2] * trans_x.shape[3]])),
        )
G
gongweibao 已提交
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179

    def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_model**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
1180 1181 1182 1183 1184 1185
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False,
            )
G
gongweibao 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198
        out = layers.matmul(weights, v)
        return out

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)

    if cache is not None:  # use cache and concat time steps
        k = cache["k"] = layers.concat([cache["k"], k], axis=1)
        v = cache["v"] = layers.concat([cache["v"], v], axis=1)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

1199 1200 1201
    ctx_multiheads = scaled_dot_product_attention(
        q, k, v, attn_bias, d_model, dropout_rate
    )
G
gongweibao 已提交
1202 1203 1204 1205

    out = __combine_heads(ctx_multiheads)

    # Project back to the model size.
1206 1207 1208 1209 1210 1211 1212
    proj_out = layers.fc(
        input=out,
        size=d_model,
        num_flatten_dims=2,
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
G
gongweibao 已提交
1213 1214 1215 1216 1217 1218 1219 1220 1221
    return proj_out


def positionwise_feed_forward(x, d_inner_hid, d_hid):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236
    hidden = layers.fc(
        input=x,
        size=d_inner_hid,
        num_flatten_dims=2,
        act="relu",
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
    out = layers.fc(
        input=hidden,
        size=d_hid,
        num_flatten_dims=2,
        param_attr=const_para_attr,
        bias_attr=const_bias_attr,
    )
G
gongweibao 已提交
1237 1238 1239
    return out


1240
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.0):
G
gongweibao 已提交
1241 1242 1243 1244 1245 1246 1247 1248 1249 1250
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
1251 1252 1253 1254 1255 1256
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.0),
                bias_attr=fluid.initializer.Constant(0.0),
            )
G
gongweibao 已提交
1257 1258
        elif cmd == "d":  # add dropout
            if dropout_rate:
1259 1260 1261 1262 1263 1264
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    seed=ModelHyperParams.dropout_seed,
                    is_test=False,
                )
G
gongweibao 已提交
1265 1266 1267 1268 1269 1270 1271
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


1272 1273 1274 1275 1276 1277 1278 1279 1280 1281
def prepare_encoder(
    src_word,
    src_pos,
    src_vocab_size,
    src_emb_dim,
    src_max_len,
    dropout_rate=0.0,
    word_emb_param_name=None,
    pos_enc_param_name=None,
):
G
gongweibao 已提交
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
    [batch_size, max_src_length_in_batch, d_model].
    This module is used at the bottom of the encoder stacks.
    """
    if TrainTaskConfig.check_acc:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
1293 1294 1295
                initializer=fluid.initializer.ConstantInitializer(0.001),
            ),
        )
G
gongweibao 已提交
1296 1297 1298 1299
    else:
        src_word_emb = layers.embedding(
            src_word,
            size=[src_vocab_size, src_emb_dim],
1300 1301 1302 1303 1304
            param_attr=fluid.ParamAttr(
                name=word_emb_param_name,
                initializer=fluid.initializer.Normal(0.0, src_emb_dim**-0.5),
            ),
        )
G
gongweibao 已提交
1305 1306 1307 1308 1309 1310 1311 1312

    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name,
            trainable=False,
1313 1314 1315
            initializer=fluid.initializer.ConstantInitializer(0.001),
        ),
    )
M
minqiyang 已提交
1316
    src_pos_enc.stop_gradient = True
G
gongweibao 已提交
1317
    enc_input = src_word_emb + src_pos_enc
1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
    return (
        layers.dropout(
            enc_input,
            dropout_prob=dropout_rate,
            seed=ModelHyperParams.dropout_seed,
            is_test=False,
        )
        if dropout_rate
        else enc_input
    )


prepare_encoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]
)
prepare_decoder = partial(
    prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]
)


def encoder_layer(
    enc_input,
    attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
G
gongweibao 已提交
1348 1349 1350 1351 1352 1353
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367
    attn_output = multi_head_attention(
        enc_input,
        enc_input,
        enc_input,
        attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
    )
    attn_output = post_process_layer(
        enc_input, attn_output, "dan", dropout_rate
    )
G
gongweibao 已提交
1368 1369 1370 1371
    ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
    return post_process_layer(attn_output, ffd_output, "dan", dropout_rate)


1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
def encoder(
    enc_input,
    attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """
    for i in range(n_layer):
        enc_output = encoder_layer(
            enc_input,
G
gongweibao 已提交
1390 1391 1392 1393 1394 1395
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
1396 1397
            dropout_rate,
        )
G
gongweibao 已提交
1398 1399 1400 1401
        enc_input = enc_output
    return enc_output


1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415
def decoder_layer(
    dec_input,
    enc_output,
    slf_attn_bias,
    dec_enc_attn_bias,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
    cache=None,
):
    """The layer to be stacked in decoder part.
G
gongweibao 已提交
1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
    """
    slf_attn_output = multi_head_attention(
        dec_input,
        dec_input,
        dec_input,
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        dropout_rate,
1429 1430
        cache,
    )
G
gongweibao 已提交
1431 1432 1433 1434
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1435 1436
        dropout_rate,
    )
G
gongweibao 已提交
1437 1438 1439 1440 1441 1442 1443 1444 1445
    enc_attn_output = multi_head_attention(
        slf_attn_output,
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
1446 1447
        dropout_rate,
    )
G
gongweibao 已提交
1448 1449 1450 1451
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
        "dan",  # residual connection + dropout + layer normalization
1452 1453
        dropout_rate,
    )
G
gongweibao 已提交
1454 1455 1456
    ffd_output = positionwise_feed_forward(
        enc_attn_output,
        d_inner_hid,
1457 1458
        d_model,
    )
G
gongweibao 已提交
1459 1460 1461 1462
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
        "dan",  # residual connection + dropout + layer normalization
1463 1464
        dropout_rate,
    )
G
gongweibao 已提交
1465
    return dec_output
X
Xin Pan 已提交
1466 1467


1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481
def decoder(
    dec_input,
    enc_output,
    dec_slf_attn_bias,
    dec_enc_attn_bias,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate=0.0,
    caches=None,
):
G
gongweibao 已提交
1482 1483 1484 1485 1486 1487 1488 1489
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
        cache = None
        if caches is not None:
            cache = caches[i]

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502
        dec_output = decoder_layer(
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            dropout_rate,
            cache=cache,
        )
G
gongweibao 已提交
1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
        dec_input = dec_output
    return dec_output


def make_all_inputs(input_fields):
    """
    Define the input data layers for the transformer model.
    """
    inputs = []
    for input_field in input_fields:
1513 1514 1515 1516 1517 1518 1519 1520 1521
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3
            else 0,
            append_batch_size=False,
        )
G
gongweibao 已提交
1522 1523 1524 1525 1526
        inputs.append(input_var)
    return inputs


def transformer(
1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539
    src_vocab_size,
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    label_smooth_eps,
):
G
gongweibao 已提交
1540
    if weight_sharing:
1541 1542 1543
        assert (
            src_vocab_size == src_vocab_size
        ), "Vocabularies in source and target should be same for weight sharing."
G
gongweibao 已提交
1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556
    enc_inputs = make_all_inputs(encoder_data_input_fields)

    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
1557 1558
        enc_inputs,
    )
G
gongweibao 已提交
1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573

    dec_inputs = make_all_inputs(decoder_data_input_fields[:-1])

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
        dec_inputs,
1574 1575
        enc_output,
    )
G
gongweibao 已提交
1576 1577 1578 1579 1580

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
    label, weights = make_all_inputs(label_data_input_fields)
    if label_smooth_eps:
1581 1582 1583 1584
        label = layers.label_smooth(
            label=layers.one_hot(input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps,
        )
G
gongweibao 已提交
1585 1586

    cost = layers.softmax_with_cross_entropy(
1587
        logits=layers.reshape(predict, shape=[-1, trg_vocab_size]),
G
gongweibao 已提交
1588
        label=label,
1589 1590
        soft_label=True if label_smooth_eps else False,
    )
G
gongweibao 已提交
1591 1592 1593 1594 1595 1596 1597 1598
    weighted_cost = cost * weights
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
    avg_cost = sum_cost / token_num
    avg_cost.stop_gradient = True
    return sum_cost, avg_cost, predict, token_num


1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611
def wrap_encoder(
    src_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    enc_inputs=None,
):
G
gongweibao 已提交
1612 1613 1614 1615 1616
    """
    The wrapper assembles together all needed layers for the encoder.
    """
    if enc_inputs is None:
        # This is used to implement independent encoder program in inference.
1617 1618 1619
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields
        )
G
gongweibao 已提交
1620
    else:
1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641
        src_word, src_pos, src_slf_attn_bias = enc_inputs
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0],
    )
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
    )
G
gongweibao 已提交
1642 1643 1644
    return enc_output


1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659
def wrap_decoder(
    trg_vocab_size,
    max_length,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    dec_inputs=None,
    enc_output=None,
    caches=None,
):
G
gongweibao 已提交
1660 1661 1662 1663 1664
    """
    The wrapper assembles together all needed layers for the decoder.
    """
    if dec_inputs is None:
        # This is used to implement independent decoder program in inference.
1665 1666 1667 1668 1669 1670 1671
        (
            trg_word,
            trg_pos,
            trg_slf_attn_bias,
            trg_src_attn_bias,
            enc_output,
        ) = make_all_inputs(decoder_data_input_fields)
G
gongweibao 已提交
1672 1673 1674
    else:
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs

1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699
    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
        dropout_rate,
        word_emb_param_name=word_emb_param_names[0]
        if weight_sharing
        else word_emb_param_names[1],
    )
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        caches=caches,
    )
G
gongweibao 已提交
1700 1701
    # Return logits for training and probs for inference.
    if weight_sharing:
1702 1703 1704 1705 1706
        predict = layers.matmul(
            x=dec_output,
            y=fluid.framework._get_var(word_emb_param_names[0]),
            transpose_y=True,
        )
G
gongweibao 已提交
1707
    else:
1708 1709 1710 1711 1712 1713 1714
        predict = layers.fc(
            input=dec_output,
            size=trg_vocab_size,
            num_flatten_dims=2,
            param_attr=const_para_attr,
            bias_attr=const_bias_attr,
        )
G
gongweibao 已提交
1715 1716 1717 1718 1719 1720
    if dec_inputs is None:
        predict = layers.softmax(predict)
    return predict


def fast_decode(
1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735
    src_vocab_size,
    trg_vocab_size,
    max_in_len,
    n_layer,
    n_head,
    d_key,
    d_value,
    d_model,
    d_inner_hid,
    dropout_rate,
    weight_sharing,
    beam_size,
    max_out_len,
    eos_idx,
):
G
gongweibao 已提交
1736 1737 1738 1739
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754
    enc_output = wrap_encoder(
        src_vocab_size,
        max_in_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        dropout_rate,
        weight_sharing,
    )
    start_tokens, init_scores, trg_src_attn_bias = make_all_inputs(
        fast_decoder_data_input_fields
    )
G
gongweibao 已提交
1755 1756

    def beam_search():
1757 1758 1759 1760 1761 1762
        max_len = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=max_out_len
        )
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0
        )
G
gongweibao 已提交
1763 1764 1765
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
        # array states will be stored for each step.
1766 1767 1768
        ids = layers.array_write(
            layers.reshape(start_tokens, (-1, 1)), step_idx
        )
G
gongweibao 已提交
1769 1770 1771 1772
        scores = layers.array_write(init_scores, step_idx)
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789
        caches = [
            {
                "k": layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, 0, d_model],
                    dtype=enc_output.dtype,
                    value=0,
                ),
                "v": layers.fill_constant_batch_size_like(
                    input=start_tokens,
                    shape=[-1, 0, d_model],
                    dtype=enc_output.dtype,
                    value=0,
                ),
            }
            for i in range(n_layer)
        ]
G
gongweibao 已提交
1790 1791 1792 1793 1794 1795
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
            pre_scores = layers.array_read(array=scores, i=step_idx)
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
1796 1797 1798
            pre_src_attn_bias = layers.sequence_expand(
                x=trg_src_attn_bias, y=pre_scores
            )
G
gongweibao 已提交
1799
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
1800 1801 1802 1803 1804 1805 1806
            pre_caches = [
                {
                    "k": layers.sequence_expand(x=cache["k"], y=pre_scores),
                    "v": layers.sequence_expand(x=cache["v"], y=pre_scores),
                }
                for cache in caches
            ]
G
gongweibao 已提交
1807 1808
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
1809
                    input=pre_enc_output,  # can't use pre_ids here since it has lod
G
gongweibao 已提交
1810 1811
                    value=1,
                    shape=[-1, 1, 1],
1812 1813
                    dtype=pre_ids.dtype,
                ),
1814
                y=layers.increment(x=step_idx, value=1.0, in_place=False),
1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
                axis=0,
            )
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                dropout_rate,
                weight_sharing,
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
                enc_output=pre_enc_output,
                caches=pre_caches,
            )
G
gongweibao 已提交
1832 1833 1834
            logits = layers.reshape(logits, (-1, trg_vocab_size))

            topk_scores, topk_indices = layers.topk(
1835 1836 1837 1838 1839 1840 1841
                input=layers.softmax(logits), k=beam_size
            )
            accu_scores = layers.elementwise_add(
                x=layers.log(topk_scores),
                y=layers.reshape(pre_scores, shape=[-1]),
                axis=0,
            )
G
gongweibao 已提交
1842 1843 1844 1845 1846 1847 1848 1849
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
                pre_scores=pre_scores,
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
1850 1851
                end_id=eos_idx,
            )
G
gongweibao 已提交
1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866

            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)

        finished_ids, finished_scores = layers.beam_search_decode(
1867 1868
            ids, scores, beam_size=beam_size, end_id=eos_idx
        )
G
gongweibao 已提交
1869 1870 1871 1872 1873 1874 1875 1876
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores


def get_model(is_dist, is_async):
    sum_cost, avg_cost, predict, token_num = transformer(
1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895
        ModelHyperParams.src_vocab_size,
        ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer,
        ModelHyperParams.n_head,
        ModelHyperParams.d_key,
        ModelHyperParams.d_value,
        ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout,
        ModelHyperParams.weight_sharing,
        TrainTaskConfig.label_smooth_eps,
    )

    local_lr_scheduler = LearningRateScheduler(
        ModelHyperParams.d_model,
        TrainTaskConfig.warmup_steps,
        TrainTaskConfig.learning_rate,
    )
1896 1897
    # Context to do validation.
    test_program = fluid.default_main_program().clone(for_test=True)
G
gongweibao 已提交
1898 1899 1900 1901 1902 1903

    if not is_dist:
        optimizer = fluid.optimizer.Adam(
            learning_rate=local_lr_scheduler.learning_rate,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
1904 1905
            epsilon=TrainTaskConfig.eps,
        )
G
gongweibao 已提交
1906 1907 1908 1909 1910
        optimizer.minimize(sum_cost)
    elif is_async:
        optimizer = fluid.optimizer.SGD(0.003)
        optimizer.minimize(sum_cost)
    else:
1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
        lr_decay = fluid.layers.learning_rate_scheduler.noam_decay(
            ModelHyperParams.d_model, TrainTaskConfig.warmup_steps
        )

        optimizer = fluid.optimizer.Adam(
            learning_rate=lr_decay,
            beta1=TrainTaskConfig.beta1,
            beta2=TrainTaskConfig.beta2,
            epsilon=TrainTaskConfig.eps,
        )
G
gongweibao 已提交
1921 1922
        optimizer.minimize(sum_cost)

1923 1924 1925 1926 1927 1928 1929 1930
    return (
        sum_cost,
        avg_cost,
        predict,
        token_num,
        local_lr_scheduler,
        test_program,
    )
X
Xin Pan 已提交
1931 1932


G
gongweibao 已提交
1933 1934 1935 1936
def update_args():
    src_dict = DataReader.load_dict(TrainTaskConfig.src_vocab_fpath)
    trg_dict = DataReader.load_dict(TrainTaskConfig.trg_vocab_fpath)
    dict_args = [
1937
        "src_vocab_size",
1938 1939 1940 1941 1942 1943 1944 1945 1946
        str(len(src_dict)),
        "trg_vocab_size",
        str(len(trg_dict)),
        "bos_idx",
        str(src_dict[TrainTaskConfig.special_token[0]]),
        "eos_idx",
        str(src_dict[TrainTaskConfig.special_token[1]]),
        "unk_idx",
        str(src_dict[TrainTaskConfig.special_token[2]]),
G
gongweibao 已提交
1947 1948 1949 1950 1951
    ]
    merge_cfg_from_list(dict_args, [TrainTaskConfig, ModelHyperParams])


class DistTransformer2x2(TestDistRunnerBase):
W
Wu Yi 已提交
1952 1953
    def run_pserver(self, args):
        get_model(True, not args.sync_mode)
1954 1955 1956 1957 1958 1959 1960
        t = self.get_transpiler(
            args.trainer_id,
            fluid.default_main_program(),
            args.endpoints,
            args.trainers,
            args.sync_mode,
        )
W
Wu Yi 已提交
1961
        pserver_prog = t.get_pserver_program(args.current_endpoint)
1962 1963 1964
        startup_prog = t.get_startup_program(
            args.current_endpoint, pserver_prog
        )
X
Xin Pan 已提交
1965 1966 1967 1968 1969 1970

        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
        exe.run(pserver_prog)

1971 1972
    def run_trainer(self, args):
        TrainTaskConfig.use_gpu = args.use_cuda
1973 1974 1975 1976 1977 1978 1979 1980
        (
            sum_cost,
            avg_cost,
            predict,
            token_num,
            local_lr_scheduler,
            test_program,
        ) = get_model(args.is_dist, not args.sync_mode)
G
gongweibao 已提交
1981

W
Wu Yi 已提交
1982
        if args.is_dist:
1983 1984 1985 1986 1987 1988 1989
            t = self.get_transpiler(
                args.trainer_id,
                fluid.default_main_program(),
                args.endpoints,
                args.trainers,
                args.sync_mode,
            )
X
Xin Pan 已提交
1990
            trainer_prog = t.get_trainer_program()
G
gongweibao 已提交
1991
            TrainTaskConfig.batch_size = 10
1992 1993 1994 1995 1996 1997
            TrainTaskConfig.train_file_pattern = (
                TrainTaskConfig.data_path
                + "train.tok.clean.bpe.32000.en-de.train_{}".format(
                    args.trainer_id
                )
            )
X
Xin Pan 已提交
1998
        else:
G
gongweibao 已提交
1999
            TrainTaskConfig.batch_size = 20
X
Xin Pan 已提交
2000 2001
            trainer_prog = fluid.default_main_program()

2002 2003 2004 2005 2006
        if args.use_cuda:
            place = fluid.CUDAPlace(0)
        else:
            place = fluid.CPUPlace()

X
Xin Pan 已提交
2007
        startup_exe = fluid.Executor(place)
G
gongweibao 已提交
2008

W
Wu Yi 已提交
2009
        TrainTaskConfig.local = not args.is_dist
G
gongweibao 已提交
2010

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
        train_loop(
            startup_exe,
            trainer_prog,
            1,
            sum_cost,
            avg_cost,
            local_lr_scheduler,
            token_num,
            predict,
            test_program,
        )
X
Xin Pan 已提交
2022 2023 2024


if __name__ == "__main__":
G
gongweibao 已提交
2025 2026
    update_args()
    runtime_main(DistTransformer2x2)