utils.py 13.8 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
import math
from functools import partial
import collections

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

# Parameters for the entire model (stem, all blocks, and head)
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
GlobalParams = collections.namedtuple(
    'GlobalParams',
    [
        'batch_norm_momentum',
        'batch_norm_epsilon',
        'dropout_rate',
        'num_classes',
        'width_coefficient',
        'depth_coefficient',
        'depth_divisor',
        'min_depth',
        'drop_connect_rate',
        'image_size',
    ],
)
40 41

# Parameters for an individual model block
42 43 44 45 46 47 48 49 50 51 52 53 54
BlockArgs = collections.namedtuple(
    'BlockArgs',
    [
        'kernel_size',
        'num_repeat',
        'input_filters',
        'output_filters',
        'expand_ratio',
        'id_skip',
        'stride',
        'se_ratio',
    ],
)
55 56

# Change namedtuple defaults
57 58
GlobalParams.__new__.__defaults__ = (None,) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None,) * len(BlockArgs._fields)
59 60 61


def round_filters(filters, global_params):
62
    """Calculate and round number of filters based on depth multiplier."""
63 64 65 66 67 68 69
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
70 71 72
    new_filters = max(
        min_depth, int(filters + divisor / 2) // divisor * divisor
    )
73 74 75 76 77 78
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
79
    """Round number of filters based on depth multiplier."""
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, prob, training):
    """Drop input connection"""
    if not training:
        return inputs
    keep_prob = 1.0 - prob
    inputs_shape = paddle.shape(inputs)
    random_tensor = keep_prob + paddle.rand(shape=[inputs_shape[0], 1, 1, 1])
    binary_tensor = paddle.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


def get_same_padding_conv2d(image_size=None):
99 100
    """Chooses static padding if you have specified an image size, and dynamic padding otherwise.
    Static padding is necessary for ONNX exporting of models."""
101 102 103 104 105 106 107
    if image_size is None:
        return Conv2dDynamicSamePadding
    else:
        return partial(Conv2dStaticSamePadding, image_size=image_size)


class Conv2dDynamicSamePadding(nn.Conv2D):
108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
    """2D Convolutions like TensorFlow, for a dynamic image size"""

    def __init__(
        self,
        in_channels,
        out_channels,
        kernel_size,
        stride=1,
        dilation=1,
        groups=1,
        bias_attr=None,
    ):
        super().__init__(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            0,
            dilation,
            groups,
            bias_attr=bias_attr,
        )
        self.stride = (
            self._stride if len(self._stride) == 2 else [self._stride[0]] * 2
        )
133 134 135 136 137 138

    def forward(self, x):
        ih, iw = x.shape[-2:]
        kh, kw = self.weight.shape[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
139
        pad_h = max(
140 141
            (oh - 1) * self.stride[0] + (kh - 1) * self._dilation[0] + 1 - ih, 0
        )
142
        pad_w = max(
143 144
            (ow - 1) * self.stride[1] + (kw - 1) * self._dilation[1] + 1 - iw, 0
        )
145
        if pad_h > 0 or pad_w > 0:
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
            x = F.pad(
                x,
                [
                    pad_w // 2,
                    pad_w - pad_w // 2,
                    pad_h // 2,
                    pad_h - pad_h // 2,
                ],
            )
        return F.conv2d(
            x,
            self.weight,
            self.bias,
            self.stride,
            self._padding,
            self._dilation,
            self._groups,
        )
164 165 166


class Conv2dStaticSamePadding(nn.Conv2D):
167 168 169 170 171
    """2D Convolutions like TensorFlow, for a fixed image size"""

    def __init__(
        self, in_channels, out_channels, kernel_size, image_size=None, **kwargs
    ):
172 173 174
        if 'stride' in kwargs and isinstance(kwargs['stride'], list):
            kwargs['stride'] = kwargs['stride'][0]
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
175 176 177
        self.stride = (
            self._stride if len(self._stride) == 2 else [self._stride[0]] * 2
        )
178 179 180

        # Calculate padding based on image size and save it
        assert image_size is not None
181 182 183
        ih, iw = (
            image_size if type(image_size) == list else [image_size, image_size]
        )
184 185 186
        kh, kw = self.weight.shape[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
187
        pad_h = max(
188 189
            (oh - 1) * self.stride[0] + (kh - 1) * self._dilation[0] + 1 - ih, 0
        )
190
        pad_w = max(
191 192
            (ow - 1) * self.stride[1] + (kw - 1) * self._dilation[1] + 1 - iw, 0
        )
193
        if pad_h > 0 or pad_w > 0:
194 195 196
            self.static_padding = nn.Pad2D(
                [pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2]
            )
197 198 199 200 201
        else:
            self.static_padding = Identity()

    def forward(self, x):
        x = self.static_padding(x)
202 203 204 205 206 207 208 209 210
        x = F.conv2d(
            x,
            self.weight,
            self.bias,
            self.stride,
            self._padding,
            self._dilation,
            self._groups,
        )
211 212 213 214
        return x


class Identity(nn.Layer):
215 216 217
    def __init__(
        self,
    ):
218 219 220 221 222 223 224
        super().__init__()

    def forward(self, x):
        return x


def efficientnet_params(model_name):
225
    """Map EfficientNet model name to parameter coefficients."""
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-l2': (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


242
class BlockDecoder:
243
    """Block Decoder for readability, straight from the official TensorFlow repository"""
244 245 246

    @staticmethod
    def _decode_block_string(block_string):
247
        """Gets a block through a string notation of arguments."""
248 249 250 251 252 253 254 255 256 257 258
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
259 260 261
        assert ('s' in options and len(options['s']) == 1) or (
            len(options['s']) == 2 and options['s'][0] == options['s'][1]
        )
262 263 264 265 266 267 268 269 270

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
271 272
            stride=[int(options['s'][0])],
        )
273 274 275 276 277

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
278 279 280 281 282
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
283
            'o%d' % block.output_filters,
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
        Decodes a list of string notations to specify blocks inside the network.

        :param string_list: a list of strings, each string is a notation of block
        :return: a list of BlockArgs namedtuples of block args
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


319 320 321 322 323 324 325 326 327
def efficientnet(
    width_coefficient=None,
    depth_coefficient=None,
    dropout_rate=0.2,
    drop_connect_rate=0.2,
    image_size=None,
    num_classes=1000,
):
    """Get block arguments according to parameter and coefficients."""
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=num_classes,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None,
349 350
        image_size=image_size,
    )
351 352 353 354 355

    return blocks_args, global_params


def get_model_params(model_name, override_params):
356
    """Get the block args and global params for a given model"""
357 358
    if model_name.startswith('efficientnet'):
        w, d, s, p = efficientnet_params(model_name)
359 360 361 362 363 364
        blocks_args, global_params = efficientnet(
            width_coefficient=w,
            depth_coefficient=d,
            dropout_rate=p,
            image_size=s,
        )
365
    else:
366 367 368
        raise NotImplementedError(
            'model name is not pre-defined: %s' % model_name
        )
369 370 371 372 373 374
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


url_map = {
375 376 377 378 379 380 381 382
    'efficientnet-b0': '/home/aistudio/data/weights/efficientnet-b0-355c32eb.pdparams',
    'efficientnet-b1': '/home/aistudio/data/weights/efficientnet-b1-f1951068.pdparams',
    'efficientnet-b2': '/home/aistudio/data/weights/efficientnet-b2-8bb594d6.pdparams',
    'efficientnet-b3': '/home/aistudio/data/weights/efficientnet-b3-5fb5a3c3.pdparams',
    'efficientnet-b4': '/home/aistudio/data/weights/efficientnet-b4-6ed6700e.pdparams',
    'efficientnet-b5': '/home/aistudio/data/weights/efficientnet-b5-b6417697.pdparams',
    'efficientnet-b6': '/home/aistudio/data/weights/efficientnet-b6-c76e70fd.pdparams',
    'efficientnet-b7': '/home/aistudio/data/weights/efficientnet-b7-dcc49843.pdparams',
383 384 385
}

url_map_advprop = {
386 387 388 389 390 391 392 393 394
    'efficientnet-b0': '/home/aistudio/data/weights/adv-efficientnet-b0-b64d5a18.pdparams',
    'efficientnet-b1': '/home/aistudio/data/weights/adv-efficientnet-b1-0f3ce85a.pdparams',
    'efficientnet-b2': '/home/aistudio/data/weights/adv-efficientnet-b2-6e9d97e5.pdparams',
    'efficientnet-b3': '/home/aistudio/data/weights/adv-efficientnet-b3-cdd7c0f4.pdparams',
    'efficientnet-b4': '/home/aistudio/data/weights/adv-efficientnet-b4-44fb3a87.pdparams',
    'efficientnet-b5': '/home/aistudio/data/weights/adv-efficientnet-b5-86493f6b.pdparams',
    'efficientnet-b6': '/home/aistudio/data/weights/adv-efficientnet-b6-ac80338e.pdparams',
    'efficientnet-b7': '/home/aistudio/data/weights/adv-efficientnet-b7-4652b6dd.pdparams',
    'efficientnet-b8': '/home/aistudio/data/weights/adv-efficientnet-b8-22a8fe65.pdparams',
395 396 397
}


398 399 400
def load_pretrained_weights(
    model, model_name, weights_path=None, load_fc=True, advprop=False
):
401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
    """Loads pretrained weights from weights path or download using url.
    Args:
        model (Module): The whole model of efficientnet.
        model_name (str): Model name of efficientnet.
        weights_path (None or str):
            str: path to pretrained weights file on the local disk.
            None: use pretrained weights downloaded from the Internet.
        load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
        advprop (bool): Whether to load pretrained weights
                        trained with advprop (valid when weights_path is None).
    """

    # AutoAugment or Advprop (different preprocessing)
    url_map_ = url_map_advprop if advprop else url_map
    state_dict = paddle.load(url_map_[model_name])

    if load_fc:
        model.set_state_dict(state_dict)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        model.set_state_dict(state_dict)

    print('Loaded pretrained weights for {}'.format(model_name))