utils.py 13.9 KB
Newer Older
1
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import re
import math
from functools import partial
import collections

import paddle
import paddle.nn as nn
import paddle.nn.functional as F

# Parameters for the entire model (stem, all blocks, and head)
GlobalParams = collections.namedtuple('GlobalParams', [
    'batch_norm_momentum', 'batch_norm_epsilon', 'dropout_rate', 'num_classes',
    'width_coefficient', 'depth_coefficient', 'depth_divisor', 'min_depth',
    'drop_connect_rate', 'image_size'
])

# Parameters for an individual model block
BlockArgs = collections.namedtuple('BlockArgs', [
    'kernel_size', 'num_repeat', 'input_filters', 'output_filters',
    'expand_ratio', 'id_skip', 'stride', 'se_ratio'
])

# Change namedtuple defaults
GlobalParams.__new__.__defaults__ = (None, ) * len(GlobalParams._fields)
BlockArgs.__new__.__defaults__ = (None, ) * len(BlockArgs._fields)


def round_filters(filters, global_params):
    """ Calculate and round number of filters based on depth multiplier. """
    multiplier = global_params.width_coefficient
    if not multiplier:
        return filters
    divisor = global_params.depth_divisor
    min_depth = global_params.min_depth
    filters *= multiplier
    min_depth = min_depth or divisor
    new_filters = max(min_depth,
                      int(filters + divisor / 2) // divisor * divisor)
    if new_filters < 0.9 * filters:  # prevent rounding by more than 10%
        new_filters += divisor
    return int(new_filters)


def round_repeats(repeats, global_params):
    """ Round number of filters based on depth multiplier. """
    multiplier = global_params.depth_coefficient
    if not multiplier:
        return repeats
    return int(math.ceil(multiplier * repeats))


def drop_connect(inputs, prob, training):
    """Drop input connection"""
    if not training:
        return inputs
    keep_prob = 1.0 - prob
    inputs_shape = paddle.shape(inputs)
    random_tensor = keep_prob + paddle.rand(shape=[inputs_shape[0], 1, 1, 1])
    binary_tensor = paddle.floor(random_tensor)
    output = inputs / keep_prob * binary_tensor
    return output


def get_same_padding_conv2d(image_size=None):
    """ Chooses static padding if you have specified an image size, and dynamic padding otherwise.
        Static padding is necessary for ONNX exporting of models. """
    if image_size is None:
        return Conv2dDynamicSamePadding
    else:
        return partial(Conv2dStaticSamePadding, image_size=image_size)


class Conv2dDynamicSamePadding(nn.Conv2D):
    """ 2D Convolutions like TensorFlow, for a dynamic image size """

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 dilation=1,
                 groups=1,
                 bias_attr=None):
98 99 100 101 102 103 104 105
        super().__init__(in_channels,
                         out_channels,
                         kernel_size,
                         stride,
                         0,
                         dilation,
                         groups,
                         bias_attr=bias_attr)
106 107 108 109 110 111 112 113
        self.stride = self._stride if len(
            self._stride) == 2 else [self._stride[0]] * 2

    def forward(self, x):
        ih, iw = x.shape[-2:]
        kh, kw = self.weight.shape[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
114 115 116 117 118 119
        pad_h = max(
            (oh - 1) * self.stride[0] + (kh - 1) * self._dilation[0] + 1 - ih,
            0)
        pad_w = max(
            (ow - 1) * self.stride[1] + (kw - 1) * self._dilation[1] + 1 - iw,
            0)
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
        if pad_h > 0 or pad_w > 0:
            x = F.pad(x, [
                pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2
            ])
        return F.conv2d(x, self.weight, self.bias, self.stride, self._padding,
                        self._dilation, self._groups)


class Conv2dStaticSamePadding(nn.Conv2D):
    """ 2D Convolutions like TensorFlow, for a fixed image size"""

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 image_size=None,
                 **kwargs):
        if 'stride' in kwargs and isinstance(kwargs['stride'], list):
            kwargs['stride'] = kwargs['stride'][0]
        super().__init__(in_channels, out_channels, kernel_size, **kwargs)
        self.stride = self._stride if len(
            self._stride) == 2 else [self._stride[0]] * 2

        # Calculate padding based on image size and save it
        assert image_size is not None
145 146 147
        ih, iw = image_size if type(image_size) == list else [
            image_size, image_size
        ]
148 149 150
        kh, kw = self.weight.shape[-2:]
        sh, sw = self.stride
        oh, ow = math.ceil(ih / sh), math.ceil(iw / sw)
151 152 153 154 155 156
        pad_h = max(
            (oh - 1) * self.stride[0] + (kh - 1) * self._dilation[0] + 1 - ih,
            0)
        pad_w = max(
            (ow - 1) * self.stride[1] + (kw - 1) * self._dilation[1] + 1 - iw,
            0)
157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
        if pad_h > 0 or pad_w > 0:
            self.static_padding = nn.Pad2D([
                pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2
            ])
        else:
            self.static_padding = Identity()

    def forward(self, x):
        x = self.static_padding(x)
        x = F.conv2d(x, self.weight, self.bias, self.stride, self._padding,
                     self._dilation, self._groups)
        return x


class Identity(nn.Layer):
172

173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
    def __init__(self, ):
        super().__init__()

    def forward(self, x):
        return x


def efficientnet_params(model_name):
    """ Map EfficientNet model name to parameter coefficients. """
    params_dict = {
        # Coefficients:   width,depth,resolution,dropout
        'efficientnet-b0': (1.0, 1.0, 224, 0.2),
        'efficientnet-b1': (1.0, 1.1, 240, 0.2),
        'efficientnet-b2': (1.1, 1.2, 260, 0.3),
        'efficientnet-b3': (1.2, 1.4, 300, 0.3),
        'efficientnet-b4': (1.4, 1.8, 380, 0.4),
        'efficientnet-b5': (1.6, 2.2, 456, 0.4),
        'efficientnet-b6': (1.8, 2.6, 528, 0.5),
        'efficientnet-b7': (2.0, 3.1, 600, 0.5),
        'efficientnet-b8': (2.2, 3.6, 672, 0.5),
        'efficientnet-l2': (4.3, 5.3, 800, 0.5),
    }
    return params_dict[model_name]


class BlockDecoder(object):
    """ Block Decoder for readability, straight from the official TensorFlow repository """

    @staticmethod
    def _decode_block_string(block_string):
        """ Gets a block through a string notation of arguments. """
        assert isinstance(block_string, str)

        ops = block_string.split('_')
        options = {}
        for op in ops:
            splits = re.split(r'(\d.*)', op)
            if len(splits) >= 2:
                key, value = splits[:2]
                options[key] = value

        # Check stride
        assert (('s' in options and len(options['s']) == 1) or
                (len(options['s']) == 2 and options['s'][0] == options['s'][1]))

        return BlockArgs(
            kernel_size=int(options['k']),
            num_repeat=int(options['r']),
            input_filters=int(options['i']),
            output_filters=int(options['o']),
            expand_ratio=int(options['e']),
            id_skip=('noskip' not in block_string),
            se_ratio=float(options['se']) if 'se' in options else None,
            stride=[int(options['s'][0])])

    @staticmethod
    def _encode_block_string(block):
        """Encodes a block to a string."""
        args = [
232 233 234 235 236 237
            'r%d' % block.num_repeat,
            'k%d' % block.kernel_size,
            's%d%d' % (block.strides[0], block.strides[1]),
            'e%s' % block.expand_ratio,
            'i%d' % block.input_filters,
            'o%d' % block.output_filters
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
        ]
        if 0 < block.se_ratio <= 1:
            args.append('se%s' % block.se_ratio)
        if block.id_skip is False:
            args.append('noskip')
        return '_'.join(args)

    @staticmethod
    def decode(string_list):
        """
        Decodes a list of string notations to specify blocks inside the network.

        :param string_list: a list of strings, each string is a notation of block
        :return: a list of BlockArgs namedtuples of block args
        """
        assert isinstance(string_list, list)
        blocks_args = []
        for block_string in string_list:
            blocks_args.append(BlockDecoder._decode_block_string(block_string))
        return blocks_args

    @staticmethod
    def encode(blocks_args):
        """
        Encodes a list of BlockArgs to a list of strings.

        :param blocks_args: a list of BlockArgs namedtuples of block args
        :return: a list of strings, each string is a notation of block
        """
        block_strings = []
        for block in blocks_args:
            block_strings.append(BlockDecoder._encode_block_string(block))
        return block_strings


def efficientnet(width_coefficient=None,
                 depth_coefficient=None,
                 dropout_rate=0.2,
                 drop_connect_rate=0.2,
                 image_size=None,
                 num_classes=1000):
    """ Get block arguments according to parameter and coefficients. """
    blocks_args = [
        'r1_k3_s11_e1_i32_o16_se0.25',
        'r2_k3_s22_e6_i16_o24_se0.25',
        'r2_k5_s22_e6_i24_o40_se0.25',
        'r3_k3_s22_e6_i40_o80_se0.25',
        'r3_k5_s11_e6_i80_o112_se0.25',
        'r4_k5_s22_e6_i112_o192_se0.25',
        'r1_k3_s11_e6_i192_o320_se0.25',
    ]
    blocks_args = BlockDecoder.decode(blocks_args)

    global_params = GlobalParams(
        batch_norm_momentum=0.99,
        batch_norm_epsilon=1e-3,
        dropout_rate=dropout_rate,
        drop_connect_rate=drop_connect_rate,
        num_classes=num_classes,
        width_coefficient=width_coefficient,
        depth_coefficient=depth_coefficient,
        depth_divisor=8,
        min_depth=None,
301 302
        image_size=image_size,
    )
303 304 305 306 307 308 309 310

    return blocks_args, global_params


def get_model_params(model_name, override_params):
    """ Get the block args and global params for a given model """
    if model_name.startswith('efficientnet'):
        w, d, s, p = efficientnet_params(model_name)
311 312 313 314
        blocks_args, global_params = efficientnet(width_coefficient=w,
                                                  depth_coefficient=d,
                                                  dropout_rate=p,
                                                  image_size=s)
315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
    else:
        raise NotImplementedError('model name is not pre-defined: %s' %
                                  model_name)
    if override_params:
        global_params = global_params._replace(**override_params)
    return blocks_args, global_params


url_map = {
    'efficientnet-b0':
    '/home/aistudio/data/weights/efficientnet-b0-355c32eb.pdparams',
    'efficientnet-b1':
    '/home/aistudio/data/weights/efficientnet-b1-f1951068.pdparams',
    'efficientnet-b2':
    '/home/aistudio/data/weights/efficientnet-b2-8bb594d6.pdparams',
    'efficientnet-b3':
    '/home/aistudio/data/weights/efficientnet-b3-5fb5a3c3.pdparams',
    'efficientnet-b4':
    '/home/aistudio/data/weights/efficientnet-b4-6ed6700e.pdparams',
    'efficientnet-b5':
    '/home/aistudio/data/weights/efficientnet-b5-b6417697.pdparams',
    'efficientnet-b6':
    '/home/aistudio/data/weights/efficientnet-b6-c76e70fd.pdparams',
    'efficientnet-b7':
    '/home/aistudio/data/weights/efficientnet-b7-dcc49843.pdparams',
}

url_map_advprop = {
    'efficientnet-b0':
    '/home/aistudio/data/weights/adv-efficientnet-b0-b64d5a18.pdparams',
    'efficientnet-b1':
    '/home/aistudio/data/weights/adv-efficientnet-b1-0f3ce85a.pdparams',
    'efficientnet-b2':
    '/home/aistudio/data/weights/adv-efficientnet-b2-6e9d97e5.pdparams',
    'efficientnet-b3':
    '/home/aistudio/data/weights/adv-efficientnet-b3-cdd7c0f4.pdparams',
    'efficientnet-b4':
    '/home/aistudio/data/weights/adv-efficientnet-b4-44fb3a87.pdparams',
    'efficientnet-b5':
    '/home/aistudio/data/weights/adv-efficientnet-b5-86493f6b.pdparams',
    'efficientnet-b6':
    '/home/aistudio/data/weights/adv-efficientnet-b6-ac80338e.pdparams',
    'efficientnet-b7':
    '/home/aistudio/data/weights/adv-efficientnet-b7-4652b6dd.pdparams',
    'efficientnet-b8':
    '/home/aistudio/data/weights/adv-efficientnet-b8-22a8fe65.pdparams',
}


def load_pretrained_weights(model,
                            model_name,
                            weights_path=None,
                            load_fc=True,
                            advprop=False):
    """Loads pretrained weights from weights path or download using url.
    Args:
        model (Module): The whole model of efficientnet.
        model_name (str): Model name of efficientnet.
        weights_path (None or str):
            str: path to pretrained weights file on the local disk.
            None: use pretrained weights downloaded from the Internet.
        load_fc (bool): Whether to load pretrained weights for fc layer at the end of the model.
        advprop (bool): Whether to load pretrained weights
                        trained with advprop (valid when weights_path is None).
    """

    # AutoAugment or Advprop (different preprocessing)
    url_map_ = url_map_advprop if advprop else url_map
    state_dict = paddle.load(url_map_[model_name])

    if load_fc:
        model.set_state_dict(state_dict)
    else:
        state_dict.pop('_fc.weight')
        state_dict.pop('_fc.bias')
        model.set_state_dict(state_dict)

    print('Loaded pretrained weights for {}'.format(model_name))