distribute_transpiler.py 52.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
"""
Transpile the program to distributed data-parallelism programs.
The main_program will be transformed to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
into a parameter server program.

Use different methods to split trainable variables to different
parameter servers.

Steps to transpile trainer:
1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
3. modify trainer program add split_op to each grad variable.
4. append send_op to send splited variables to server and fetch
    params(splited blocks or origin param) from server.
5. append concat_op to merge splited blocks to update local weights.

Steps to transpile pserver:
1. create new program for parameter server.
2. create params and grad variables that assigned to current server instance.
3. create a sub-block in the server side program
4. append ops that should run on current server instance.
5. add listen_and_serv op
"""
D
dzhwinter 已提交
38

T
typhoonzero 已提交
39
from __future__ import print_function
40

T
typhoonzero 已提交
41
import math
42

Y
Yancey1989 已提交
43
from ps_dispatcher import RoundRobin, HashName, PSDispatcher
Y
Yancey 已提交
44
from .. import core, framework
T
typhoonzero 已提交
45 46 47
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
48
from details import *
49 50 51

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
52
OP_ROLE_VAR_ATTR_NAME = core.op_proto_and_checker_maker.kOpRoleVarAttrName()
Y
Yancey1989 已提交
53 54 55
RPC_OP_ROLE_ATTR_NAME = op_role_attr_name = core.op_proto_and_checker_maker.kOpRoleAttrName(
)
RPC_OP_ROLE_ATTR_VALUE = core.op_proto_and_checker_maker.OpRole.RPC
T
done  
typhoonzero 已提交
56 57


T
typhoonzero 已提交
58 59 60 61 62 63
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
64

T
typhoonzero 已提交
65 66
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
67 68


69 70 71 72
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


73
def split_variable(var_list, service_count, min_block_size=8192):
T
typhoonzero 已提交
74
    """
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    We may need to split dense tensor to one or more blocks and put
    them equally onto parameter server. One block is a sub-tensor
    aligned by dim[0] of the tensor.

    We need to have a minimal block size so that the calculations in
    the parameter server side can gain better performance. By default
    minimum block size 8K elements (maybe 16bit or 32bit or 64bit). 

    Args:
        var_list (list): List of variables.
        service_count (int): Numel of pserver services. A pserver may have two
            or more listening ports.
        min_block_size (int): Minimum splitted block size.
    Returns:
        blocks (list[(varname, block_id, current_block_size)]): A list 
            of VarBlocks. Each VarBlock specifies a shard of the var.
T
typhoonzero 已提交
91 92 93
    """
    blocks = []
    for var in var_list:
94
        split_count = service_count
T
typhoonzero 已提交
95 96 97 98
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
99
        if max_pserver_count < service_count:
T
typhoonzero 已提交
100 101 102 103 104 105 106 107 108
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
109
        # update split_count after aligning
T
typhoonzero 已提交
110 111 112 113 114 115 116 117 118
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


T
done  
typhoonzero 已提交
119
class DistributeTranspiler:
120
    def _has_distributed_lookup_table(self):
121 122 123 124 125 126
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
127
        for op in self.origin_program.global_block().ops:
128 129 130 131 132 133 134 135 136 137 138 139
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

140
        return len(distributed_lookup_table_ops) > 0
141

142 143 144 145 146
    def _update_dist_lookup_table_vars(self, param_list, grad_list,
                                       params_grads):
        # TODO(wuyi): put find a way to put dist lookup table stuff all together.
        # update self.table_param_grad and self.trainer_side_table_grad_list
        program = self.origin_program
147 148 149 150 151 152
        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
153
                if grad.name != grad_var_name(self.table_name)
154 155 156 157 158 159
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
160
            if self.sync_mode:
161
                self.trainer_side_table_grad_list = [
162 163
                    program.global_block().create_var(
                        name="%s.trainer_%d.pserver_%d" %
164
                        (table_grad_var.name, self.trainer_id, index),
165 166 167 168 169 170
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
            else:
171
                self.trainer_side_table_grad_list = [
172 173 174 175 176 177 178
                    program.global_block().create_var(
                        name="%s.pserver_%d" % (table_grad_var.name, index),
                        type=table_grad_var.type,
                        shape=table_grad_var.shape,
                        dtype=table_grad_var.dtype)
                    for index in range(len(self.pserver_endpoints))
                ]
179

180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
    def _init_splited_vars(self, split_method):
        # update these mappings for further transpile:
        # 1. param_var_mapping: param var name -> [splited params vars]
        # 2. grad_var_mapping: grad var name -> [splited grads vars]
        # 3. grad_param_mapping: grad.blockx -> param.blockx
        # 4. param_grad_ep_mapping: ep -> {"params": [], "grads": []}

        param_list = []
        grad_list = []
        for p, g in self.params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)

        self._update_dist_lookup_table_vars(param_list, grad_list,
                                            self.params_grads)

        grad_blocks = split_variable(grad_list, len(self.pserver_endpoints))
        param_blocks = split_variable(param_list, len(self.pserver_endpoints))
Y
update  
Yancey1989 已提交
201
        assert (len(grad_blocks) == len(param_blocks))
202 203 204 205 206 207 208 209
        # origin_varname -> [splited_var]
        self.param_var_mapping = self._create_vars_from_blocklist(
            self.origin_program, param_blocks)
        self.grad_var_mapping = self._create_vars_from_blocklist(
            self.origin_program,
            grad_blocks,
            add_trainer_suffix=self.trainer_num > 1)
        self.grad_param_mapping = dict()
Y
update  
Yancey1989 已提交
210 211 212
        for g, p in zip(grad_blocks, param_blocks):
            g_name, g_bid, _ = g.split(":")
            p_name, p_bid, _ = p.split(":")
213 214
            self.grad_param_mapping[self.grad_var_mapping[g_name][int(g_bid)]] =  \
                    self.param_var_mapping[p_name][int(p_bid)]
215

216
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
217
        self.param_grad_ep_mapping = dict()
Y
Yancey1989 已提交
218 219 220 221 222 223 224 225 226
        [
            self.param_grad_ep_mapping.update({
                ep: {
                    "params": [],
                    "grads": []
                }
            }) for ep in self.pserver_endpoints
        ]

227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    def transpile(self,
                  trainer_id,
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
                  split_method=RoundRobin,
                  sync_mode=True):
        """
        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
        """
        assert (split_method.__bases__[0] == PSDispatcher)
        if program is None:
            program = default_main_program()
        self.origin_program = program
        self.trainer_num = trainers
        self.sync_mode = sync_mode
        self.trainer_id = trainer_id
        pserver_endpoints = pservers.split(",")
        self.pserver_endpoints = pserver_endpoints
        self.optimize_ops, self.params_grads = self._get_optimize_pass()

        ps_dispatcher = split_method(self.pserver_endpoints)
        self.has_distributed_lookup_table = self._has_distributed_lookup_table()

        # split and create vars, then put splited vars in dicts for later use.
        self._init_splited_vars(split_method)

Y
Yancey1989 已提交
267 268
        # step 3.1: insert send op to send gradient vars to parameter servers
        ps_dispatcher.reset()
Y
update  
Yancey1989 已提交
269
        send_vars = []
270
        for orig_varname, splited_vars in self.grad_var_mapping.items():
Y
update  
Yancey1989 已提交
271
            eplist = ps_dispatcher.dispatch(splited_vars)
Y
Yancey1989 已提交
272 273 274 275 276 277 278 279 280
            if len(splited_vars) == 1:
                orig_varname = splited_vars[0].name
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
            elif len(splited_vars) > 1:
                orig_var = program.global_block().vars[orig_varname]
                index = find_op_by_output_arg(program.global_block(),
                                              orig_varname)
                self._insert_split_op(program, orig_var, index, splited_vars)
Y
update  
Yancey1989 已提交
281
                index += 1
Y
Yancey1989 已提交
282 283 284 285
            else:
                AssertionError("Can not insert the send op by original "
                               "variable name :", orig_varname)

Y
Yancey1989 已提交
286
            program.global_block().insert_op(
Y
update  
Yancey1989 已提交
287
                index=index + 1,
Y
Yancey1989 已提交
288
                type="send_vars",
Y
update  
Yancey1989 已提交
289
                inputs={"X": splited_vars},
Y
Yancey1989 已提交
290 291 292 293 294
                outputs={},
                attrs={
                    "epmap": eplist,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
Y
update  
Yancey1989 已提交
295 296
            for _, var in enumerate(splited_vars):
                send_vars.append(var)
Y
Yancey1989 已提交
297 298 299 300 301

        if self.sync_mode:
            program.global_block().append_op(
                type="send_barrier",
                inputs={},
Y
Yancey1989 已提交
302
                outputs={},
Y
Yancey1989 已提交
303 304
                attrs={
                    "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
305 306
                    "sync_mode": self.sync_mode,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Y
Yancey1989 已提交
307
                })
Y
Yancey1989 已提交
308 309 310

        # step 3.2: insert recv op to receive parameters from parameter server
        recv_vars = []
Y
update  
Yancey1989 已提交
311
        for _, var in enumerate(send_vars):
312
            recv_vars.append(self.grad_param_mapping[var])
Y
update  
Yancey1989 已提交
313
        ps_dispatcher.reset()
Y
Yancey1989 已提交
314 315
        eplist = ps_dispatcher.dispatch(recv_vars)

T
typhoonzero 已提交
316
        for i, ep in enumerate(eplist):
Y
Yancey1989 已提交
317 318 319
            self.param_grad_ep_mapping[ep]["params"].append(recv_vars[i])
            self.param_grad_ep_mapping[ep]["grads"].append(send_vars[i])
        # step4: Concat the parameters splits together after recv.
320
        for varname, splited_var in self.param_var_mapping.iteritems():
Y
Yancey1989 已提交
321 322 323 324 325 326 327 328
            eps = []
            for var in splited_var:
                index = [v.name for v in recv_vars].index(var.name)
                eps.append(eplist[index])

            program.global_block().append_op(
                type="recv",
                inputs={},
Y
Yancey1989 已提交
329 330 331 332 333
                outputs={"Out": splited_var},
                attrs={
                    "epmap": eps,
                    RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                })
T
typhoonzero 已提交
334

T
typhoonzero 已提交
335
        program.global_block().append_op(
Y
Yancey1989 已提交
336 337
            type="fetch_barrier",
            inputs={},
Y
Yancey1989 已提交
338
            outputs={},
Q
qiaolongfei 已提交
339 340
            attrs={
                "endpoints": pserver_endpoints,
Y
Yancey1989 已提交
341
                RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
Q
qiaolongfei 已提交
342
            })
Y
Yancey1989 已提交
343

344
        for varname, splited_var in self.param_var_mapping.iteritems():
T
typhoonzero 已提交
345 346
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
347
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
348
            program.global_block().append_op(
T
typhoonzero 已提交
349
                type="concat",
T
typhoonzero 已提交
350
                inputs={"X": splited_var},
T
typhoonzero 已提交
351
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
352
                attrs={"axis": 0})
T
typhoonzero 已提交
353

354
        if self.has_distributed_lookup_table:
Q
update  
qiaolongfei 已提交
355 356
            self._replace_lookup_table_op_with_prefetch(program,
                                                        pserver_endpoints)
Y
Yancey1989 已提交
357
            self._split_table_grad_and_add_send_vars(program, pserver_endpoints)
358

T
typhoonzero 已提交
359 360
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
361
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
362
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
363 364
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
365 366 367 368

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
369
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
370 371 372 373 374 375
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
376
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
377 378 379 380 381 382 383 384
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
385 386 387 388 389
            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
390 391 392 393 394 395 396 397 398
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
399
            if self.sync_mode and self.trainer_num > 1:
400
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
401 402 403 404 405 406 407 408 409
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
410

Q
qiaolongfei 已提交
411
        # step 3
412
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
413 414 415
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
416
        # step 3.2
T
typhoonzero 已提交
417 418 419 420
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
421 422
            if self._is_optimizer_op(op) and self._is_opt_op_on_pserver(
                    endpoint, op):
T
typhoonzero 已提交
423
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
424
        # step 3.3
T
typhoonzero 已提交
425
        # Iterate through the ops, and if an op and the optimize ops
426
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
427
        # append it into the sub program.
T
typhoonzero 已提交
428 429 430 431 432

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
433 434
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
435

436 437
        def __append_optimize_op__(op, block, grad_to_block_id, merged_var):
            if self._is_optimizer_op(op):
Q
qiaolongfei 已提交
438
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
439
                                         self.origin_program, merged_var)
T
typhoonzero 已提交
440
            else:
441 442 443 444 445 446 447
                self._append_pserver_non_opt_ops(block, op, endpoint)

        def __op_have_grad_input__(op):
            for varname in op.input_arg_names:
                if varname.find("@GRAD") >= 0:
                    return varname
            return ""
T
typhoonzero 已提交
448

449
        # append lr decay ops to the child block if exists
450 451
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
452 453
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
454
            for _, op in enumerate(lr_ops):
455
                self._append_pserver_non_opt_ops(lr_decay_block, op, endpoint)
456

T
typhoonzero 已提交
457
        # append op to the current block
Q
qiaolongfei 已提交
458
        grad_to_block_id = []
Q
qiaolongfei 已提交
459
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
460
        for idx, opt_op in enumerate(opt_op_on_pserver):
461
            per_opt_block = pserver_program.create_block(pre_block_idx)
462 463 464 465 466 467 468 469
            # append grad merging ops before clip and weight decay
            for _, op in enumerate(self.optimize_ops):
                # find the origin @GRAD var before clipping
                grad_varname_for_block = __op_have_grad_input__(op)
                if ufind.is_connected(op, opt_op) and grad_varname_for_block:
                    merged_var = self._append_pserver_grad_merge_ops(
                        per_opt_block, grad_varname_for_block, endpoint,
                        grad_to_block_id, self.origin_program)
T
typhoonzero 已提交
470 471
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
472
                if ufind.is_connected(op, opt_op) and op not in global_ops:
473 474
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id,
                                           merged_var)
T
typhoonzero 已提交
475 476

        # append global ops
477
        if global_ops:
Q
qiaolongfei 已提交
478 479 480
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
481
                __append_optimize_op__(glb_op, opt_state_block,
482
                                       grad_to_block_id, None)
T
typhoonzero 已提交
483

484 485 486 487
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
488
            table_opt_block = self._create_table_optimize_block(
489
                pserver_index, pserver_program, pre_block_idx, grad_to_block_id)
490
            prefetch_block = self._create_prefetch_block(
491
                pserver_index, pserver_program, table_opt_block)
492 493 494 495 496 497 498 499 500

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
501 502 503 504 505 506
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
507
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
508
                "endpoint": endpoint,
509
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
510 511
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
Q
qiaolongfei 已提交
512
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
513
            })
514

T
typhoonzero 已提交
515 516 517 518 519 520 521 522 523 524
        pserver_program.sync_with_cpp()
        return pserver_program

    def get_startup_program(self, endpoint, pserver_program):
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
525
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
526 527 528 529 530 531 532 533 534 535 536 537 538
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
539
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
        return s_prog

572 573
    # ====================== private transpiler functions =====================

574
    # transpiler function for dis lookup_table
Q
update  
qiaolongfei 已提交
575 576
    def _replace_lookup_table_op_with_prefetch(self, program,
                                               pserver_endpoints):
577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
Y
Yancey1989 已提交
623 624
                        outputs={"Out": self.prefetch_output_vars},
                        attrs={
625
                            "epmap": pserver_endpoints,
Y
Yancey1989 已提交
626 627
                            RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                        })
628 629 630 631 632 633 634 635 636 637 638 639 640 641 642

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
643
                    delete_ops(program.global_block(), [op])
644 645 646
                    # break for loop
                    break

Y
Yancey1989 已提交
647
    def _split_table_grad_and_add_send_vars(self, program, pserver_endpoints):
648 649 650
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
651
        table_grad_name = grad_var_name(self.table_name)
652 653 654 655 656 657 658 659 660 661
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
662
                    outputs={"Out": self.trainer_side_table_grad_list})
663 664 665
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
666
                    inputs={'X': self.trainer_side_table_grad_list},
Y
Yancey1989 已提交
667 668 669 670 671 672
                    outputs={},
                    attrs={
                        "sync_send": True,
                        "epmap": pserver_endpoints,
                        RPC_OP_ROLE_ATTR_NAME: RPC_OP_ROLE_ATTR_VALUE
                    })
673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
693
            type="lookup_sparse_table",
694 695 696 697 698 699 700 701 702 703 704
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
705
                                     pre_block_idx, grad_to_block_id):
706 707
        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
708 709 710 711 712 713 714 715
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
716 717 718
        # parameter must be selected rows
        param_var.desc.set_type(core.VarDesc.VarType.SELECTED_ROWS)
        grad_var = pserver_program.global_block().clone_variable(
T
typhoonzero 已提交
719
            self.origin_program.global_block().vars[grad_var_name(
720
                self.table_name)])
721 722 723 724 725 726

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
727
        table_opt_block = pserver_program.create_block(pre_block_idx)
728 729 730
        # only support sgd now
        assert table_opt_op.type == "sgd"

731 732 733
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
734
            pserver_side_table_grad_list = [
735 736 737 738 739 740 741 742 743
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

744
            # append sum op for pserver_side_table_grad_list
745 746
            table_opt_block.append_op(
                type="sum",
747
                inputs={"X": pserver_side_table_grad_list},
748
                outputs={"Out": [grad_var]})
749 750
        else:
            # in async_mode, for table gradient, it also need to be splited to each parameter server
751
            origin_grad_name = grad_var.name
752 753
            splited_grad_name = self.trainer_side_table_grad_list[
                pserver_index].name
754 755
            if not splited_grad_name.startswith(origin_grad_name):
                raise ValueError("origin_grad_var: " + splited_grad_name +
756
                                 " grad_var:" + grad_var.name)
757 758
            grad_var = pserver_program.global_block().rename_var(
                origin_grad_name, splited_grad_name)
759 760 761 762 763 764 765 766 767 768 769 770 771 772 773

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

774 775 776
        # add table parameter gradient and it's block id to grad_to_block_id
        grad_to_block_id.append(grad_var.name + ":" + str(table_opt_block.idx))

777 778
        return table_opt_block

T
typhoonzero 已提交
779 780 781 782 783
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
784
        Create vars for each split.
T
typhoonzero 已提交
785 786
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
787 788 789 790 791 792 793
        Args:
            program (ProgramDesc): ProgramDesc which gradients blong.
            block_list (list[(varname, block_id, block_size)]): List of gradient blocks.
            add_trainer_suffix (Bool): Add trainer suffix to new variable's name if set True.
        Returns: 
            var_mapping (dict(varname->[new_varname_variable])):A dict mapping 
                from original var name to each var split.
T
typhoonzero 已提交
794
        """
795 796

        # varname->[(block_id, current_block_size)]
T
typhoonzero 已提交
797
        block_map = dict()
798

T
typhoonzero 已提交
799
        var_mapping = dict()
T
typhoonzero 已提交
800 801 802 803 804 805
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
806
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
807
            if len(splited) == 1:
808
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
809 810 811 812 813 814 815 816
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
817
                continue
T
typhoonzero 已提交
818 819

            var_mapping[varname] = []
T
typhoonzero 已提交
820 821 822 823
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
824

T
typhoonzero 已提交
825
            for i, block in enumerate(splited):
T
typhoonzero 已提交
826
                size = block[1]
T
typhoonzero 已提交
827 828 829 830
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
831
                new_var_name = ""
832
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
833 834 835 836 837
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
838
                var = program.global_block().create_var(
T
typhoonzero 已提交
839 840
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
841
                    dtype=orig_var.dtype,
842
                    type=orig_var.type,
T
typhoonzero 已提交
843
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
844
                var_mapping[varname].append(var)
T
typhoonzero 已提交
845
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
846
        return var_mapping
T
done  
typhoonzero 已提交
847

848 849 850 851 852 853 854 855 856 857 858
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
859 860 861 862 863 864 865
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
866
            persistable=persistable)
T
done  
typhoonzero 已提交
867

Y
Yancey1989 已提交
868
    def _insert_split_op(self, program, orig_var, index, splited_vars):
Y
update  
Yancey1989 已提交
869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892
        if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
            height_sections = []
            for v in splited_vars:
                height_sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_selected_rows",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"height_sections": height_sections})
        elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
            sections = []
            for v in splited_vars:
                sections.append(v.shape[0])
            program.global_block().insert_op(
                index=index + 1,
                type="split_byref",
                inputs={"X": orig_var},
                outputs={"Out": splited_vars},
                attrs={"sections": sections}  # assume split evenly
            )
        else:
            AssertionError("Variable type should be in set "
                           "[LOD_TENSOR, SELECTED_ROWS]")
T
done  
typhoonzero 已提交
893

T
typhoonzero 已提交
894 895 896 897
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
898
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

921 922
    def _get_varname_parts(self, varname):
        # returns origin, blockid, trainerid
T
typhoonzero 已提交
923
        orig_var_name = ""
924 925 926 927 928 929 930 931 932 933
        trainer_part = ""
        block_part = ""
        trainer_idx = varname.find(".trainer_")
        if trainer_idx >= 0:
            trainer_part = varname[trainer_idx + 1:]
        else:
            trainer_idx = len(varname)
        block_index = varname.find(".block")
        if block_index >= 0:
            block_part = varname[block_index + 1:trainer_idx]
T
typhoonzero 已提交
934
        else:
935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
            block_index = len(varname)
        orig_var_name = varname[0:min(block_index, trainer_idx)]
        return orig_var_name, block_part, trainer_part

    def _orig_varname(self, varname):
        orig, _, _ = self._get_varname_parts(varname)
        return orig

    def _append_pserver_grad_merge_ops(self, optimize_block,
                                       grad_varname_for_block, endpoint,
                                       grad_to_block_id, origin_program):
        program = optimize_block.program
        pserver_block = program.global_block()
        grad_block = None
        for g in self.param_grad_ep_mapping[endpoint]["grads"]:
            if self._orig_varname(g.name) == \
                    self._orig_varname(grad_varname_for_block):
                grad_block = g
                break
        if not grad_block:
            # do not append this op if current endpoint
            # is not dealing with this grad block
            return
        orig_varname, block_name, trainer_name = self._get_varname_parts(
            grad_block.name)
        if block_name:
            merged_var_name = '.'.join([orig_varname, block_name])
        else:
            merged_var_name = orig_varname
        merged_var = \
            pserver_block.vars[merged_var_name]
        grad_to_block_id.append(merged_var.name + ":" + str(optimize_block.idx))
        if self.sync_mode and self.trainer_num > 1:
            vars2merge = []
            for i in xrange(self.trainer_num):
                per_trainer_name = "%s.trainer_%d" % \
                (merged_var_name, i)
                vars2merge.append(pserver_block.vars[per_trainer_name])

            optimize_block.append_op(
                type="sum",
                inputs={"X": vars2merge},
                outputs={"Out": merged_var})
            # TODO(panyx0718): What if it's SELECTED_ROWS.
            if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                optimize_block.append_op(
                    type="scale",
                    inputs={"X": merged_var},
                    outputs={"Out": merged_var},
                    attrs={"scale": 1.0 / float(self.trainer_num)})
        return merged_var
T
typhoonzero 已提交
986

987
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
988
                            grad_to_block_id, origin_program, merged_var):
989
        program = optimize_block.program
T
typhoonzero 已提交
990
        pserver_block = program.global_block()
T
typhoonzero 已提交
991
        new_inputs = dict()
T
typhoonzero 已提交
992 993
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
994
        for key in opt_op.input_names:
T
typhoonzero 已提交
995 996 997 998 999 1000
            if key == "Grad":
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1001
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1002 1003 1004 1005
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1006
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1007
                    name=param_block.name,
T
typhoonzero 已提交
1008
                    persistable=True,
T
typhoonzero 已提交
1009 1010 1011
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1012
            elif key == "LearningRate":
1013
                # learning rate variable has already be created by non-optimize op,
1014
                # don't create it once again.
1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1026

T
typhoonzero 已提交
1027
        for key in opt_op.input_names:
1028 1029
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1030
                continue
1031
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1032 1033 1034 1035
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1036
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1037 1038 1039 1040 1041
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1042

1043
        # change output's ParamOut variable
1044 1045
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1046
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1047

1048
        optimize_block.append_op(
T
typhoonzero 已提交
1049 1050
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1051
            outputs=outputs,
T
typhoonzero 已提交
1052 1053
            attrs=opt_op.attrs)

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063
    def _is_splited_grad_var(self, var, var_dict):
        grad_block = None
        for _, g in var_dict.iteritems():
            if self._orig_varname(g.name) == self._orig_varname(var.name):
                if g.name.find(".trainer_") == -1:
                    grad_block = g
                    break
        return grad_block

    def _append_pserver_non_opt_ops(self, optimize_block, opt_op, endpoint):
1064
        program = optimize_block.program
1065
        # Append the ops for parameters that do not need to be optimized/updated
1066 1067
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1068
        for key, varlist in inputs.iteritems():
1069 1070
            if not isinstance(varlist, list):
                varlist = [varlist]
T
typhoonzero 已提交
1071
            for var in varlist:
1072 1073 1074 1075 1076 1077 1078
                # for ops like clipping and weight decay, get the splited var
                # for inputs/outputs
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    inputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
1079
                    program.global_block().create_var(
T
typhoonzero 已提交
1080 1081 1082 1083 1084
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1085 1086
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1087
        for key, varlist in outputs.iteritems():
1088 1089 1090
            if not isinstance(varlist, list):
                varlist = [varlist]
            for var in varlist:
1091 1092 1093 1094 1095 1096
                grad_block = self._is_splited_grad_var(
                    var, program.global_block().vars)
                if grad_block:
                    outputs[key] = grad_block
                elif not program.global_block().vars.has_key(var.name):
                    program.global_block().clone_variable(var)
1097

1098
        optimize_block.append_op(
T
typhoonzero 已提交
1099
            type=opt_op.type,
T
typhoonzero 已提交
1100 1101
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1102 1103
            attrs=opt_op.attrs)

1104 1105 1106 1107
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1121 1122
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1123
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1124
        op2_output_names = op2.desc.output_arg_names()
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152
    def _is_opt_role_op(self, op):
        # NOTE: depend on oprole to find out whether this op is for
        # optimize
        op_maker = core.op_proto_and_checker_maker
        optimize_role = core.op_proto_and_checker_maker.OpRole.Optimize
        if op_maker.kOpRoleAttrName() in op.attrs and \
            int(op.attrs[op_maker.kOpRoleAttrName()]) == int(optimize_role):
            return True
        return False

    def _is_optimizer_op(self, op):
T
typhoonzero 已提交
1153 1154
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1155 1156 1157 1158 1159 1160 1161
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1162
        if op.input("Param")[0] in param_names:
1163 1164 1165
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1166
                param = op.input("Param")[0]
T
typhoonzero 已提交
1167
                if same_or_split_var(n, param) and n != param:
1168 1169 1170
                    return True
            return False

T
typhoonzero 已提交
1171
    def _get_input_map_from_op(self, varmap, op):
1172
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1185
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1186 1187 1188 1189 1190 1191 1192 1193 1194 1195
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1196 1197 1198 1199 1200 1201

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
1202
            if self._is_optimizer_op(op):
1203 1204 1205 1206
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1207
        block = self.origin_program.global_block()
1208 1209 1210 1211 1212
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1213

1214 1215 1216 1217 1218
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
1219
                    not self._is_optimizer_op(op1) and not self._is_optimizer_op(op2):
1220 1221 1222 1223 1224 1225
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1226 1227
                    # we only need to append op for once
                    break
1228
        return lr_ops
Y
Yancey1989 已提交
1229 1230

    def _get_optimize_pass(self):
1231 1232 1233 1234 1235 1236
        """
        Get optimizer operators, paramters and gradients from origin_program
        Returns:
            opt_ops (list): optimize operators.
            params_grads (dict): paramter->gradient.
        """
Y
Yancey1989 已提交
1237 1238 1239
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
1240
        origin_var_dict = self.origin_program.global_block().vars
Y
Yancey1989 已提交
1241
        for op in block.ops:
1242
            if self._is_opt_role_op(op):
Y
Yancey1989 已提交
1243
                opt_ops.append(op)
1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254
                # HACK(wuyi): if we find grad vars from input of optimize
                # ops, we may get the output of clip op. Use syntax "@GRAD"
                # and op_role_var to get the pair.
                for input_name in op.input_arg_names:
                    if input_name.find("@GRAD") != -1 and \
                        op.attrs[RPC_OP_ROLE_ATTR_NAME]:
                        param_name = op.attrs[OP_ROLE_VAR_ATTR_NAME][0]
                        params_grads.append([
                            origin_var_dict[param_name],
                            origin_var_dict[input_name]
                        ])
1255 1256
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1257 1258 1259
            else:
                pass
        return opt_ops, params_grads
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False