operator.h 17.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
Q
Qiao Longfei 已提交
19
#include <string>
D
dzhwinter 已提交
20
#include <tuple>
Q
Qiao Longfei 已提交
21 22 23
#include <unordered_map>
#include <vector>

Y
Yu Yang 已提交
24
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
25 26 27 28 29 30 31 32 33 34 35
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
36

Q
Qiao Longfei 已提交
37
DECLARE_int32(inner_op_parallelism);
38
DECLARE_int32(min_row_size_to_use_multithread);
Q
Qiao Longfei 已提交
39

Q
Qiao Longfei 已提交
40 41 42
namespace paddle {
namespace framework {

43
/// If a variable is a empty variable, that name will be used.
44
constexpr char kEmptyVarName[] = "@EMPTY@";
45 46 47

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
48
constexpr char kTempVarName[] = "@TEMP@";
49 50 51 52

/// If a variable's name has a certain suffix, it means that the
/// variable is the gradient of another varibale.
/// e.g. Variable "x@GRAD" is the gradient of varibale "x".
53
constexpr char kGradVarSuffix[] = "@GRAD";
54

M
minqiyang 已提交
55 56
constexpr size_t kGradVarSuffixSize = 5U;

57
/// Variables with this suffix are supposed to be filled up with zeros.
58
constexpr char kZeroVarSuffix[] = "@ZERO";
59

C
chengduo 已提交
60 61 62
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

D
dzhwinter 已提交
63
// define some kernel priority
64
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
65 66
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

67
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
68 69 70 71 72
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
73 74
}

M
minqiyang 已提交
75
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
76
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
77 78 79 80 81
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
82 83
}

Q
qiaolongfei 已提交
84
proto::VarType::Type GetDataTypeOfVar(const Variable* var);
C
chengduo 已提交
85 86
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
87

Q
Qiao Longfei 已提交
88
class OperatorBase;
89
class ExecutionContext;
90

X
Xin Pan 已提交
91 92
class RuntimeContext {
 public:
X
Xin Pan 已提交
93 94
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
95

X
Xin Pan 已提交
96 97 98 99
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
100 101 102 103
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
104
/**
X
Xin Pan 已提交
105
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
106 107 108 109 110 111
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
112 113
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
114

Q
Qiao Longfei 已提交
115 116
  virtual ~OperatorBase() {}

117
  /// Executor will call this interface function to Run an op.
118 119
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
120

T
typhoonzero 已提交
121 122 123
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

124 125 126
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
127

128 129
  virtual bool SupportGPU() const { return false; }

130 131
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
132
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
133 134
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
135 136
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
137 138 139
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
140

Y
Yu Yang 已提交
141 142
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
143

144
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
145
  //! Get a input with argument's name described in `op_proto`
146
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
147
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
148
  const std::vector<std::string>& Inputs(const std::string& name) const;
149
  //! Get all inputs variable names
Q
qijun 已提交
150 151
  std::vector<std::string> InputVars() const;

152
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
153
  //! Get a output with argument's name described in `op_proto`
154
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
155 156
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
157
  const std::vector<std::string>& Outputs(const std::string& name) const;
158
  //! Get all outputs variable names
Y
Yu Yang 已提交
159
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
160

161
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
B
baojun-nervana 已提交
162
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
163 164
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
165

Q
qiaolongfei 已提交
166
 protected:
Q
Qiao Longfei 已提交
167
  std::string type_;
D
dongzhihong 已提交
168
  // NOTE: in case of OpGrad, inputs_ contains:
169
  // I (Inputs)
D
dongzhihong 已提交
170 171
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
172
  VariableNameMap inputs_;
Y
Yu Yang 已提交
173

D
dongzhihong 已提交
174 175
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
176
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
177
  AttributeMap attrs_;
178 179
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
180 181 182 183

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
184 185
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
186 187
};

188
class ExecutionContext {
Y
Yan Chunwei 已提交
189
 public:
190
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
191 192 193
                   const platform::DeviceContext& device_context,
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
194

Q
qiaolongfei 已提交
195 196 197 198
  const OperatorBase& op() const { return op_; }

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
199
  template <typename T>
Y
Yu Yang 已提交
200 201
  inline const T& Attr(const std::string& name) const {
    return op_.Attr<T>(name);
Q
qiaolongfei 已提交
202 203
  }

204
  bool HasInput(const std::string& name) const;
205

206
  bool HasOutput(const std::string& name) const;
207

Y
Yu Yang 已提交
208
  size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
209
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
210 211
  }

Y
Yu Yang 已提交
212
  size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
213
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
214 215
  }

X
Xin Pan 已提交
216
  const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
217

X
Xin Pan 已提交
218
  Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
219

220 221
  const std::vector<const Variable*> MultiInputVar(
      const std::string& name) const {
X
Xin Pan 已提交
222 223 224 225
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
Y
Yan Chunwei 已提交
226
    std::vector<const Variable*> res;
X
Xin Pan 已提交
227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
    res.reserve(it->second.size());
    std::transform(it->second.begin(), it->second.end(),
                   std::back_inserter(res),
                   [this](Variable* var) { return var; });
    return res;
  }

  std::vector<Variable*> MultiOutputVar(const std::string& name) const {
    auto names = op_.Outputs(name);
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

  const std::vector<Variable*> LegacyMultiInputVar(
      const std::string& name) const {
    auto names = op_.Inputs(name);
    std::vector<Variable*> res;
247
    res.reserve(names.size());
248 249
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
250 251
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
252
                   });
Y
Yan Chunwei 已提交
253 254 255
    return res;
  }

X
Xin Pan 已提交
256
  std::vector<Variable*> LegacyMultiOutputVar(const std::string& name) const {
Y
Yan Chunwei 已提交
257
    auto names = op_.Outputs(name);
258
    std::vector<Variable*> res;
259
    res.reserve(names.size());
260 261
    std::transform(names.begin(), names.end(), std::back_inserter(res),
                   [this](const std::string& name) {
Y
Yu Yang 已提交
262 263
                     return name == kEmptyVarName ? nullptr
                                                  : scope_.FindVar(name);
264
                   });
Y
Yan Chunwei 已提交
265 266 267
    return res;
  }

268 269
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
270
    auto* var = InputVar(name);
271
    return var == nullptr ? nullptr : &var->Get<T>();
272 273 274 275
  }

  template <typename T>
  T* Output(const std::string& name) const {
276
    auto var = OutputVar(name);
277
    return var == nullptr ? nullptr : var->GetMutable<T>();
278 279
  }

X
Xin Pan 已提交
280
  template <typename T>
X
clean  
Xin Pan 已提交
281 282
  const T* LegacyInput(const std::string& name) const {
    auto* var = LegacyInputVar(name);
X
Xin Pan 已提交
283 284 285 286
    return var == nullptr ? nullptr : &var->Get<T>();
  }

  template <typename T>
X
clean  
Xin Pan 已提交
287 288
  T* LegacyOutput(const std::string& name) const {
    auto var = LegacyOutputVar(name);
X
Xin Pan 已提交
289 290 291
    return var == nullptr ? nullptr : var->GetMutable<T>();
  }

X
clean  
Xin Pan 已提交
292
  const Variable* LegacyInputVar(const std::string& name) const;
X
Xin Pan 已提交
293

X
clean  
Xin Pan 已提交
294
  Variable* LegacyOutputVar(const std::string& name) const;
X
Xin Pan 已提交
295

296 297
  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
X
Xin Pan 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> const T* {
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    const std::vector<Variable*>& vars = it->second;
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
    return res;
  }

  template <typename T>
  const std::vector<const T*> LegacyMultiInput(const std::string& name) const {
330 331 332 333
    auto names = op_.Inputs(name);
    std::vector<const T*> res;
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
334
                   [&](const std::string& sub_name) -> const T* {
335
                     auto var = scope_.FindVar(sub_name);
336
                     return var == nullptr ? nullptr : &var->Get<T>();
337 338 339 340 341
                   });
    return res;
  }

  template <typename T>
X
Xin Pan 已提交
342
  std::vector<T*> LegacyMultiOutput(const std::string& name) const {
343
    auto names = op_.Outputs(name);
344
    std::vector<T*> res;
345 346
    res.reserve(names.size());
    std::transform(names.begin(), names.end(), std::back_inserter(res),
C
chengduo 已提交
347
                   [&](const std::string& sub_name) -> T* {
348
                     auto var = scope_.FindVar(sub_name);
349
                     return var == nullptr ? nullptr : var->GetMutable<T>();
350 351 352 353
                   });
    return res;
  }

354
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
355

Q
QI JUN 已提交
356 357 358 359 360
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

361
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
362
    return device_context_;
Q
qijun 已提交
363
  }
Q
qijun 已提交
364

Q
QI JUN 已提交
365 366 367 368 369 370 371 372
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
    PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace()));
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

D
dzhwinter 已提交
373
  //! Get actual name vector for this input.
D
Dong Zhihong 已提交
374 375 376
  const std::vector<std::string>& Inputs(const std::string& name) const {
    return op_.Inputs(name);
  }
D
Dong Zhihong 已提交
377

D
dzhwinter 已提交
378
  //! Get actual name vector for this output.
D
Dong Zhihong 已提交
379 380 381 382
  const std::vector<std::string>& Outputs(const std::string& name) const {
    return op_.Outputs(name);
  }

X
Xin Pan 已提交
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
    auto tmp_allocation_ptr = platform::DeviceTemporaryAllocator::Instance()
                                  .Get<DevContext>(dev_ctx)
                                  .Allocate(product(dim) * sizeof(T));
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

    PADDLE_ENFORCE(
        dynamic_cast<platform::TemporaryAllocation*>(allocation_ptr) != nullptr,
        "The AllocationPtr must be TemporaryAllocation.");
    PADDLE_ENFORCE_EQ(allocation_ptr->size(),
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

407
 private:
408 409
  const OperatorBase& op_;
  const Scope& scope_;
410
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
411
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
412 413
};

414 415 416
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
417
template <>
X
clean  
Xin Pan 已提交
418
const Tensor* ExecutionContext::LegacyInput<Tensor>(
X
Xin Pan 已提交
419 420
    const std::string& name) const;

421 422 423 424
template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

X
Xin Pan 已提交
425 426 427 428
template <>
const std::vector<const Tensor*> ExecutionContext::LegacyMultiInput<Tensor>(
    const std::string& name) const;

429 430 431
template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

X
Xin Pan 已提交
432
template <>
X
clean  
Xin Pan 已提交
433
Tensor* ExecutionContext::LegacyOutput<Tensor>(const std::string& name) const;
X
Xin Pan 已提交
434

435 436 437 438
template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
439
class OpKernelBase {
Q
qijun 已提交
440
 public:
Q
qijun 已提交
441
  /**
442
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
443 444
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
445
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
446 447
   */

448
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
449

Y
Yu Yang 已提交
450 451 452 453 454 455 456
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
457 458
};

Y
Yu Yang 已提交
459 460
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
461
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
462
  using OpKernelMap =
Y
yuyang18 已提交
463
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
464

Y
Yu Yang 已提交
465 466
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
467 468
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
469 470 471 472
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
473
  }
Y
Yan Chunwei 已提交
474

475
  bool SupportGPU() const override {
Y
Yu Yang 已提交
476 477 478 479 480
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
481 482
  }

483 484 485
  virtual void InferShape(InferShapeContext* ctx) const {
    OpInfoMap::Instance().Get(Type()).infer_shape_(ctx);
  }
Y
Yu Yang 已提交
486

X
Xin Pan 已提交
487 488
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
489

490
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
491 492

 protected:
493 494 495
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
496 497

 private:
498
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
499
  // same.
500
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
501
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
Y
yuyang18 已提交
502 503 504 505 506 507 508

  /**
   * Transfer data from scope to a transfered scope. If there is no data need to
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
509 510 511 512
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
513 514 515 516

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
Q
Qiao Longfei 已提交
517 518
};

Y
Yu Yang 已提交
519 520
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
521 522
}  // namespace framework
}  // namespace paddle