norm.py 53.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18 19 20 21 22 23 24 25 26 27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

28
# TODO: define normalization api
29

Z
zhiboniu 已提交
30 31
from ...fluid.dygraph import BatchNorm  # noqa: F401
from ...fluid.dygraph import SpectralNorm  # noqa: F401
C
ceci3 已提交
32

33
from ...framework import get_default_dtype
C
ceci3 已提交
34

Z
zhiboniu 已提交
35 36
from ..initializer import Constant
from ...framework import ParamAttr
37
from ...fluid.data_feeder import check_variable_and_dtype
38 39 40 41 42 43

from ..functional import batch_norm, layer_norm, instance_norm

import numpy as np
import numbers
import warnings
Z
zhiboniu 已提交
44
from ...framework import no_grad
45
from .. import functional as F
46
from paddle import _C_ops, _legacy_C_ops
Z
zhiboniu 已提交
47
from .. import Layer
Z
zhiboniu 已提交
48
from paddle import in_dynamic_mode
49
from paddle.fluid.framework import in_dygraph_mode, _in_legacy_dygraph
50

51 52
__all__ = []

C
ceci3 已提交
53

Z
zhiboniu 已提交
54
class _InstanceNormBase(Layer):
55
    """
56
    This class is based class for InstanceNorm1D, 2d, 3d.
57

C
cnn 已提交
58
    See InstaceNorm1D, InstanceNorm2D or InstanceNorm3D for more details.
59 60
    """

61 62 63 64 65 66 67 68 69 70
    def __init__(
        self,
        num_features,
        epsilon=1e-5,
        momentum=0.9,
        weight_attr=None,
        bias_attr=None,
        data_format="NCHW",
        name=None,
    ):
71
        super().__init__()
72

73
        if weight_attr is False or bias_attr is False:
74 75
            assert (
                weight_attr == bias_attr
76
            ), "weight_attr and bias_attr must be set to False at the same time in InstanceNorm"
77 78 79
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
80
        self._num_features = num_features
81

82
        if weight_attr is not False and bias_attr is not False:
83 84 85 86
            self.scale = self.create_parameter(
                attr=self._weight_attr,
                shape=[num_features],
                default_initializer=Constant(1.0),
87 88 89 90 91 92 93 94
                is_bias=False,
            )
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=[num_features],
                default_initializer=Constant(0.0),
                is_bias=True,
            )
95 96 97 98 99 100 101 102 103 104
        else:
            self.scale = None
            self.bias = None

    def _check_input_dim(self, input):
        raise NotImplementedError("InstanceNorm Base error")

    def forward(self, input):
        self._check_input_dim(input)

105 106 107
        return instance_norm(
            input, weight=self.scale, bias=self.bias, eps=self._epsilon
        )
108

109
    def extra_repr(self):
110 111 112
        return 'num_features={}, epsilon={}'.format(
            self._num_features, self._epsilon
        )
113

114

C
cnn 已提交
115
class InstanceNorm1D(_InstanceNormBase):
116
    r"""
117
    Create a callable object of `InstanceNorm1D`. Applies Instance Normalization over a 3D input (a mini-batch of 1D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
118 119 120 121 122 123

    DataLayout: NCL `[batch, in_channels, length]`

    :math:`input` is the input features over a mini-batch.

    ..  math::
124

125 126 127 128 129 130 131
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
132

133
Where `H` means height of feature map, `W` means width of feature map.
134 135 136 137 138 139 140

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
141 142 143 144
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
145
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
146 147 148 149
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
150
        data_format(str, optional): Specify the input data format, may be "NC", "NCL". Default "NCL".
151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..


    Shape:
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length).
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

          import paddle

168
          x = paddle.rand((2, 2, 3))
C
cnn 已提交
169
          instance_norm = paddle.nn.InstanceNorm1D(2)
170 171
          instance_norm_out = instance_norm(x)

Z
zhang wenhui 已提交
172
          print(instance_norm_out)
173 174 175 176 177

    """

    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
178 179 180 181 182
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
183 184


C
cnn 已提交
185
class InstanceNorm2D(_InstanceNormBase):
186
    r"""
187
    Create a callable object of `InstanceNorm2D`. Applies Instance Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
188 189 190 191 192 193 194

    DataLayout: NCHW `[batch, in_channels, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
195

196 197 198 199 200 201 202
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
203

204
Where `H` means height of feature map, `W` means width of feature map.
205 206 207 208 209 210 211

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
212 213 214 215
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
216
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
217 218 219 220
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
    `       If it is set to False, will not create bias_attr. Default: None.
221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
        data_format(str, optional): Specify the input data format, could be "NCHW". Default: NCHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 4-D tensor with shape: (batch, num_features, height, weight).
        - output: 4-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

236
            import paddle
237

238 239 240
            x = paddle.rand((2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm2D(2)
            instance_norm_out = instance_norm(x)
241

242
            print(instance_norm_out)
243 244 245 246
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 4:
247 248 249
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
250 251


C
cnn 已提交
252
class InstanceNorm3D(_InstanceNormBase):
253
    r"""
254
    Create a callable object of `InstanceNorm3D`. Applies Instance Normalization over a 5D input (a mini-batch of 3D inputs with additional channel dimension) as described in the paper Instance Normalization: The Missing Ingredient for Fast Stylization .
255 256 257 258 259 260 261

    DataLayout: NCHW `[batch, in_channels, D, in_height, in_width]`


    :math:`input` is the input features over a mini-batch.

    ..  math::
262

263 264 265 266 267 268 269
        \mu_{\beta} &\gets \frac{1}{HW} \sum_{i=1}^{HW} x_i \qquad &//\
        \ mean\ of\ one\  feature\ map\ in\ mini-batch \\
        \sigma_{\beta}^{2} &\gets \frac{1}{HW} \sum_{i=1}^{HW}(x_i - \
        \mu_{\beta})^2 \qquad &//\ variance\ of\ one\ feature\ map\ in\ mini-batch \\
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
270

271
Where `H` means height of feature map, `W` means width of feature map.
272 273 274 275 276 277 278

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): A value added to the denominator for
            numerical stability. Default is 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
279 280 281 282
            of instance_norm. If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as weight_attr, the name of scale can be set in ParamAttr.
            If the Initializer of the weight_attr is not set, the parameter is initialized
            one. If it is set to False, will not create weight_attr. Default: None.
283
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of instance_norm.
284 285 286 287
            If it is set to None or one attribute of ParamAttr, instance_norm
            will create ParamAttr as bias_attr, the name of bias can be set in ParamAttr.
            If the Initializer of the bias_attr is not set, the bias is initialized zero.
            If it is set to False, will not create bias_attr. Default: None.
288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
        data_format(str, optional): Specify the input data format, could be "NCDHW". Default: NCDHW.
        name(str, optional): Name for the InstanceNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight).
        - output: 5-D tensor with same shape as input x.

    Returns:
        None.


    Examples:

        .. code-block:: python

303
            import paddle
304

305 306 307
            x = paddle.rand((2, 2, 2, 2, 3))
            instance_norm = paddle.nn.InstanceNorm3D(2)
            instance_norm_out = instance_norm(x)
308

309
            print(instance_norm_out.numpy)
310 311 312 313
    """

    def _check_input_dim(self, input):
        if len(input.shape) != 5:
314 315 316
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
317 318


Z
zhiboniu 已提交
319
class GroupNorm(Layer):
320 321 322 323 324 325 326 327
    """
    This interface is used to construct a callable object of the ``GroupNorm`` class.
    For more details, refer to code examples.
    It implements the function of the Group Normalization Layer.
    Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .

    Parameters:
        num_groups(int): The number of groups that divided from channels.
328
        num_channels(int): The number of channels of input.
329
        epsilon(float, optional): The small value added to the variance to prevent
330
            division by zero. Default: 1e-05.
331
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
332 333
            scale :math:`g`. If it is set to False, no scale will be added to the output units.
            If it is set to None, the bias is initialized one. Default: None.
334
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
335 336
            bias :math:`b`. If it is set to False, no bias will be added to the output units.
            If it is set to None, the bias is initialized zero. Default: None.
337 338 339 340
        data_format(str, optional): Specify the input data format. Only NCHW is supported. Default: NCHW.
        name(str, optional): Name for the GroupNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
341 342
        - x: Tensor with shape: (batch, num_features, *).
        - output: The same shape as input x.
343 344 345 346 347 348

    Returns:
        None

    Examples:
        .. code-block:: python
Z
zhang wenhui 已提交
349

350
            import paddle
351

352
            x = paddle.arange(48, dtype="float32").reshape((2, 6, 2, 2))
353 354
            group_norm = paddle.nn.GroupNorm(num_channels=6, num_groups=6)
            group_norm_out = group_norm(x)
355

356
            print(group_norm_out)
357 358
    """

359 360 361 362 363 364 365 366 367 368
    def __init__(
        self,
        num_groups,
        num_channels,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
369
        super().__init__()
370 371 372 373 374
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        self._epsilon = epsilon
        self._num_channels = num_channels
        self._num_groups = num_groups
375
        if data_format not in ['NCHW', 'NHWC']:
376
            raise ValueError("unsupported data layout:" + data_format)
377
        self._data_format = data_format
378 379 380

        param_shape = [self._num_channels]

381
        if weight_attr is False:
382
            self.weight = self.create_parameter(
383 384
                attr=None, shape=param_shape, default_initializer=Constant(1.0)
            )
385 386 387 388 389
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
390 391 392
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
393
                self._weight_attr is not None
394 395
                and self._weight_attr.learning_rate == 0.0
            )
396

397
        if bias_attr is False:
398 399 400 401 402 403
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
404 405
            self.bias.stop_gradient = True
        else:
406 407 408 409
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
            self.bias.stop_gradient = (
410 411
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
412
            )
413 414

    def forward(self, input):
415
        if in_dygraph_mode():
416
            return _C_ops.group_norm(
417 418 419 420 421
                input,
                self.weight,
                self.bias,
                self._epsilon,
                self._num_groups,
422
                self._data_format,
423
            )
424

425 426 427 428 429 430
        mean_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True
        )
        variance_out = self._helper.create_variable_for_type_inference(
            dtype=input.dtype, stop_gradient=True
        )
431

432
        if _in_legacy_dygraph():
433
            pre_act, _, _ = _legacy_C_ops.group_norm(
434 435 436 437 438 439 440 441
                input,
                self.weight,
                self.bias,
                mean_out,
                variance_out,
                'epsilon',
                self._epsilon,
                'groups',
442 443
                self._num_groups,
            )
444
            return pre_act
445

446 447 448 449 450 451 452 453
        inputs = {'X': input}
        if self.bias is not None:
            inputs['Bias'] = self.bias
        if self.weight is not None:
            inputs['Scale'] = self.weight

        # create output
        group_norm_out = self._helper.create_variable_for_type_inference(
454 455 456 457 458 459 460 461 462 463 464 465 466
            dtype=input.dtype
        )

        self._helper.append_op(
            type="group_norm",
            inputs=inputs,
            outputs={
                "Y": group_norm_out,
                "Mean": mean_out,
                "Variance": variance_out,
            },
            attrs={"epsilon": self._epsilon, "groups": self._num_groups},
        )
467 468 469

        return self._helper.append_activation(group_norm_out, None)

470 471
    def extra_repr(self):
        return 'num_groups={}, num_channels={}, epsilon={}'.format(
472 473
            self._num_groups, self._num_channels, self._epsilon
        )
474

475

Z
zhiboniu 已提交
476
class LayerNorm(Layer):
477
    r"""
478
    Construct a callable object of the ``LayerNorm`` class.
479 480 481 482 483 484 485 486
    For more details, refer to code examples.
    It implements the function of the Layer Normalization Layer and can be applied to mini-batch input data.
    Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_

    The formula is as follows:

    ..  math::

487
        \mu & = \frac{1}{H}\sum_{i=1}^{H} x_i
488

489
        \sigma & = \sqrt{\frac{1}{H}\sum_{i=1}^{H}{(x_i - \mu)^2} + \epsilon}
490

491
        y & = f(\frac{g}{\sigma}(x - \mu) + b)
492 493 494

    - :math:`x`: the vector representation of the summed inputs to the neurons in that layer.
    - :math:`H`: the number of hidden units in a layers
495
    - :math:`\epsilon`: the small value added to the variance to prevent division by zero.
496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526
    - :math:`g`: the trainable scale parameter.
    - :math:`b`: the trainable bias parameter.

    Parameters:
        normalized_shape(int|list|tuple): Input shape from an expected input of
            size :math:`[*, normalized_shape[0], normalized_shape[1], ..., normalized_shape[-1]]`.
            If it is a single integer, this module will normalize over the last dimension
            which is expected to be of that specific size.
        epsilon(float, optional): The small value added to the variance to prevent
            division by zero. Default: 1e-05.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            gain :math:`g`. If False, weight is None. If is None, a default :code:`ParamAttr` would be added as scale. The
            :attr:`param_attr` is initialized as 1 if it is added. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the learnable
            bias :math:`b`. If is False, bias is None. If is None, a default :code:`ParamAttr` would be added as bias. The
            :attr:`bias_attr` is initialized as 0 if it is added. Default: None.
        name(str, optional): Name for the LayerNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
        - x: 2-D, 3-D, 4-D or 5-D tensor.
        - output: same shape as input x.

    Returns:
        None

    Examples:

        .. code-block:: python

          import paddle

527 528
          x = paddle.rand((2, 2, 2, 3))
          layer_norm = paddle.nn.LayerNorm(x.shape[1:])
529 530
          layer_norm_out = layer_norm(x)

Z
zhang wenhui 已提交
531
          print(layer_norm_out)
532 533
    """

534 535 536 537 538 539 540 541
    def __init__(
        self,
        normalized_shape,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        name=None,
    ):
542
        super().__init__()
543 544 545 546 547 548 549 550 551 552 553 554 555 556 557
        if isinstance(normalized_shape, numbers.Integral):
            normalized_shape = [normalized_shape]

        self._normalized_shape = list(normalized_shape)
        self._epsilon = epsilon
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
        param_shape = [np.prod(self._normalized_shape)]

        if weight_attr is False:
            self.weight = None
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
558 559
                default_initializer=Constant(1.0),
            )
560 561 562 563

        if bias_attr is False:
            self.bias = None
        else:
564 565 566
            self.bias = self.create_parameter(
                attr=self._bias_attr, shape=param_shape, is_bias=True
            )
567 568

    def forward(self, input):
569 570 571 572 573 574 575
        return layer_norm(
            input,
            normalized_shape=self._normalized_shape,
            weight=self.weight,
            bias=self.bias,
            epsilon=self._epsilon,
        )
576

577
    def extra_repr(self):
578 579 580
        return 'normalized_shape={}, epsilon={}'.format(
            self._normalized_shape, self._epsilon
        )
581

582

Z
zhiboniu 已提交
583
class _BatchNormBase(Layer):
584 585 586 587
    """
    BatchNorm base .
    """

588 589 590 591 592 593 594 595 596 597 598
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        use_global_stats=None,
        name=None,
    ):
599
        super().__init__()
600 601 602
        self._num_features = num_features
        self._weight_attr = weight_attr
        self._bias_attr = bias_attr
C
ceci3 已提交
603
        self._use_global_stats = use_global_stats
604 605

        if get_default_dtype() == 'float16':
G
Guoxia Wang 已提交
606 607 608
            self._dtype = 'float32'
        else:
            self._dtype = get_default_dtype()
609 610 611 612

        param_shape = [num_features]

        # create parameter
613
        if weight_attr is False:
614
            self.weight = self.create_parameter(
G
Guoxia Wang 已提交
615 616 617
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
618 619
                default_initializer=Constant(1.0),
            )
620 621 622 623 624
            self.weight.stop_gradient = True
        else:
            self.weight = self.create_parameter(
                attr=self._weight_attr,
                shape=param_shape,
G
Guoxia Wang 已提交
625
                dtype=self._dtype,
626 627 628
                default_initializer=Constant(1.0),
            )
            self.weight.stop_gradient = (
629
                self._weight_attr is not None
630 631
                and self._weight_attr.learning_rate == 0.0
            )
632

633
        if bias_attr is False:
634 635 636 637 638 639 640
            self.bias = self.create_parameter(
                attr=None,
                shape=param_shape,
                dtype=self._dtype,
                default_initializer=Constant(0.0),
                is_bias=True,
            )
641 642
            self.bias.stop_gradient = True
        else:
643 644 645 646 647 648 649
            self.bias = self.create_parameter(
                attr=self._bias_attr,
                shape=param_shape,
                dtype=self._dtype,
                is_bias=True,
            )
            self.bias.stop_gradient = (
650 651
                self._bias_attr is not None
                and self._bias_attr.learning_rate == 0.0
652
            )
653 654 655 656 657 658 659 660

        moving_mean_name = None
        moving_variance_name = None

        if name is not None:
            moving_mean_name = name + "_mean"
            moving_variance_name = name + "_variance"

661 662 663 664 665 666 667 668 669 670
        self._mean = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_mean_name,
                initializer=Constant(0.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
671 672
        self._mean.stop_gradient = True

673 674 675 676 677 678 679 680 681 682
        self._variance = self.create_parameter(
            dtype=self._dtype,
            attr=ParamAttr(
                name=moving_variance_name,
                initializer=Constant(1.0),
                trainable=False,
                do_model_average=True,
            ),
            shape=param_shape,
        )
683 684 685 686 687 688 689
        self._variance.stop_gradient = True

        self._data_format = data_format
        self._in_place = False
        self._momentum = momentum
        self._epsilon = epsilon
        self._fuse_with_relu = False
690
        self._name = name
691 692 693 694

    def _check_input_dim(self, input):
        raise NotImplementedError("BatchNorm Base error")

695 696 697
    def _check_data_format(self, input):
        raise NotImplementedError("BatchNorm Base data format error")

698 699
    def forward(self, input):

700 701
        self._check_data_format(self._data_format)

702 703
        self._check_input_dim(input)

704
        if self.training:
705
            warnings.warn(
706 707 708 709 710 711 712 713 714 715 716 717 718 719 720
                "When training, we now always track global mean and variance."
            )

        return batch_norm(
            input,
            self._mean,
            self._variance,
            weight=self.weight,
            bias=self.bias,
            training=self.training,
            momentum=self._momentum,
            epsilon=self._epsilon,
            data_format=self._data_format,
            use_global_stats=self._use_global_stats,
        )
721

722 723
    def extra_repr(self):
        main_str = 'num_features={}, momentum={}, epsilon={}'.format(
724 725
            self._num_features, self._momentum, self._epsilon
        )
726
        if self._data_format != 'NCHW':
727 728 729 730 731
            main_str += ', data_format={}'.format(self._data_format)
        if self._name is not None:
            main_str += ', name={}'.format(self._name)
        return main_str

732

C
cnn 已提交
733
class BatchNorm1D(_BatchNormBase):
734
    r"""
735 736
    Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

737 738
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
739 740 741 742
    Calculated as follows:

    ..  math::

743 744 745 746
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
747

748 749
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
750 751 752 753
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
754 755
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
756 757 758 759 760

    The normalization function formula is as follows:

    ..  math::

761 762
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
763

764 765 766
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
767 768 769 770 771 772 773

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
774
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
775
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
776 777
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
778
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
779
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
780
        data_format(str, optional): Specify the input data format, may be "NC", "NCL" or "NLC". Default "NCL".
C
ceci3 已提交
781
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
782 783 784
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
785 786
        - x: 2-D or 3-D tensor with shape: (batch, num_features) or (batch, num_features, length) when data_format is "NC" or "NCL",
            (batch, length, num_features) when data_format is "NLC".
787 788 789 790
        - output: 3-D tensor with same shape as input x.

    Returns:
        None.
791

792 793 794 795 796 797

    Examples:
        .. code-block:: python

          import paddle

798
          x = paddle.rand((2, 1, 3))
C
cnn 已提交
799
          batch_norm = paddle.nn.BatchNorm1D(1)
800 801
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
802
          print(batch_norm_out)
803 804
    """

805 806 807 808 809 810 811 812 813 814 815
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCL',
        use_global_stats=None,
        name=None,
    ):
816
        super().__init__(
817 818 819 820 821 822 823 824 825
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
826

827 828 829
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NC' or input == 'NCL':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
830 831
        elif input == "NHWC" or input == 'NLC':
            self._data_format = "NHWC"
832
        else:
F
Feiyu Chan 已提交
833
            raise ValueError(
834 835
                'expected NC , NCL, NLC or None for data_format input'
            )
836

837 838
    def _check_input_dim(self, input):
        if len(input.shape) != 2 and len(input.shape) != 3:
839 840 841 842 843
            raise ValueError(
                'expected 2D or 3D input (got {}D input)'.format(
                    len(input.shape)
                )
            )
844 845


C
cnn 已提交
846
class BatchNorm2D(_BatchNormBase):
847
    r"""
848 849
    Applies Batch Normalization over a 4D input (a mini-batch of 2D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

850 851
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
852 853 854 855
    Calculated as follows:

    ..  math::

856 857
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//
        \ mini-batch\ mean \\
858
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i -
859
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
860

861 862
    When use_global_stats = True, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are not the statistics of one mini-batch.
863 864 865 866
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
867 868
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
869 870 871 872 873

    The normalization function formula is as follows:

    ..  math::

874 875
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
876

877 878 879
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
880 881 882 883 884 885 886

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
887
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
888
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
889 890
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
891
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
892
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
893
        data_format(str, optional): Specify the input data format, the data format can be "NCHW" or "NHWC". Default: NCHW.
C
ceci3 已提交
894
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
895 896 897
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
898 899
        - x: 4-D tensor with shape: (batch, num_features, height, weight) when data_format is "NCHW",
            or (batch, height, weight, num_features) when data_format is "NHWC".
900 901 902 903 904 905 906 907 908 909
        - output: 4-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

910
          x = paddle.rand((2, 1, 2, 3))
C
cnn 已提交
911
          batch_norm = paddle.nn.BatchNorm2D(1)
912 913
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
914
          print(batch_norm_out)
915 916
    """

917
    def _check_data_format(self, input):
918
        if input == 'NCHW':
919
            self._data_format = input
F
Feiyu Chan 已提交
920 921
        elif input == "NHWC":
            self._data_format = input
922
        else:
F
Feiyu Chan 已提交
923
            raise ValueError('expected NCHW or NHWC for data_format input')
924

925 926
    def _check_input_dim(self, input):
        if len(input.shape) != 4:
927 928 929
            raise ValueError(
                'expected 4D input (got {}D input)'.format(len(input.shape))
            )
930 931


C
cnn 已提交
932
class BatchNorm3D(_BatchNormBase):
933
    r"""
934 935
    Applies Batch Normalization over a 5D input (a mini-batch of 3D inputswith additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

936 937
    When use_global_stats = False, the :math:`\mu_{\beta}`
    and :math:`\sigma_{\beta}^{2}` are the statistics of one mini-batch.
938 939 940 941
    Calculated as follows:

    ..  math::

942 943 944 945
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
946

C
ceci3 已提交
947
    When use_global_stats = True, the :math:`\\mu_{\\beta}`
948 949 950 951 952
    and :math:`\\sigma_{\\beta}^{2}` are not the statistics of one mini-batch.
    They are global or running statistics (moving_mean and moving_variance). It usually got from the
    pre-trained model. Calculated as follows:

    .. math::
953 954
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
955 956 957 958 959

    The normalization function formula is as follows:

    ..  math::

960 961
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
962

963 964 965
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable proportional parameter
    - :math:`\beta` : trainable deviation parameter
966 967 968 969 970 971 972

    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
            of batch_norm. If it is set to None or one attribute of ParamAttr, batch_norm
973
            will create ParamAttr as weight_attr. If it is set to False, the weight is not learnable.
974
            If the Initializer of the weight_attr is not set, the parameter is initialized with ones. Default: None.
975 976
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of batch_norm.
            If it is set to None or one attribute of ParamAttr, batch_norm
977
            will create ParamAttr as bias_attr. If it is set to False, the weight is not learnable.
978
            If the Initializer of the bias_attr is not set, the bias is initialized zero. Default: None.
F
Feiyu Chan 已提交
979
        data_format(str, optional): Specify the input data format, the data format can be "NCDHW" or "NDHWC. Default: NCDHW.
C
ceci3 已提交
980
        use_global_stats(bool|None, optional): Whether to use global mean and variance. If set to False, use the statistics of one mini-batch, if set to True, use the global statistics, if set to None, use global statistics in the test phase and use the statistics of one mini-batch in the training phase. Default: None.
981 982 983
        name(str, optional): Name for the BatchNorm, default is None. For more information, please refer to :ref:`api_guide_Name`..

    Shape:
F
Feiyu Chan 已提交
984 985
        - x: 5-D tensor with shape: (batch, num_features, dims, height, weight) when data_format is "NCDHW",
            or (batch, dims, height, weight, num_features) when data_format is "NDHWC".
986 987 988 989 990 991 992 993 994 995
        - output: 5-D tensor with same shape as input x.

    Returns:
        None

    Examples:
        .. code-block:: python

          import paddle

996
          x = paddle.rand((2, 1, 2, 2, 3))
C
cnn 已提交
997
          batch_norm = paddle.nn.BatchNorm3D(1)
998 999
          batch_norm_out = batch_norm(x)

Z
zhang wenhui 已提交
1000
          print(batch_norm_out)
1001 1002
    """

1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCDHW',
        use_global_stats=None,
        name=None,
    ):
1014
        super().__init__(
1015 1016 1017 1018 1019 1020 1021 1022 1023
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            use_global_stats,
            name,
        )
C
ceci3 已提交
1024

1025 1026 1027
    def _check_data_format(self, input):
        if input == 'NCHW' or input == 'NCDHW':
            self._data_format = 'NCHW'
F
Feiyu Chan 已提交
1028 1029
        elif input == "NHWC" or input == "NDHWC":
            self._data_format = 'NHWC'
1030
        else:
F
Feiyu Chan 已提交
1031
            raise ValueError(
1032 1033
                'expected NCDHW, NDHWC or None for data_format input'
            )
1034

1035 1036
    def _check_input_dim(self, input):
        if len(input.shape) != 5:
1037 1038 1039
            raise ValueError(
                'expected 5D input (got {}D input)'.format(len(input.shape))
            )
1040 1041


1042
class SyncBatchNorm(_BatchNormBase):
1043
    r"""
C
ceci3 已提交
1044
    This interface is used to construct a callable object of the ``SyncBatchNorm`` class.
1045 1046
    It implements the function of the Cross-GPU Synchronized Batch Normalization Layer, and can
    be used as a normalizer function for other operations, such as conv2d and fully connected
C
ceci3 已提交
1047 1048 1049 1050 1051 1052 1053
    operations.
    The data is normalized by the mean and variance of the channel based on whole mini-batch
    , which including data in all gpus.
    Refer to `Batch Normalization: Accelerating Deep Network Training by Reducing
    Internal Covariate Shift <https://arxiv.org/pdf/1502.03167.pdf>`_
    for more details.

1054
    When model in training mode, the :math:`\\mu_{\\beta}`
C
ceci3 已提交
1055 1056 1057 1058 1059
    and :math:`\\sigma_{\\beta}^{2}` are the statistics of whole mini-batch data in all gpus.
    Calculated as follows:

    ..  math::

1060 1061 1062 1063
        \mu_{\beta} &\gets \frac{1}{m} \sum_{i=1}^{m} x_i \qquad &//\
        \ mini-batch\ mean \\
        \sigma_{\beta}^{2} &\gets \frac{1}{m} \sum_{i=1}^{m}(x_i - \
        \mu_{\beta})^2 \qquad &//\ mini-batch\ variance \\
C
ceci3 已提交
1064 1065 1066 1067 1068

    - :math:`x` : whole mini-batch data in all gpus
    - :math:`m` : the size of the whole mini-batch data

    When model in evaluation mode, the :math:`\\mu_{\\beta}`
1069
    and :math:`\sigma_{\beta}^{2}` are global statistics (moving_mean and moving_variance,
C
ceci3 已提交
1070 1071 1072
    which usually got from the pre-trained model). Global statistics calculated as follows:

    .. math::
1073 1074
        moving\_mean = moving\_mean * momentum + \mu_{\beta} * (1. - momentum) \quad &// global \ mean \\
        moving\_variance = moving\_variance * momentum + \sigma_{\beta}^{2} * (1. - momentum) \quad &// global \ variance \\
C
ceci3 已提交
1075 1076

    The formula of normalization is as follows:
1077

C
ceci3 已提交
1078 1079
    ..  math::

1080 1081 1082
        \hat{x_i} &\gets \frac{x_i - \mu_\beta} {\sqrt{\
        \sigma_{\beta}^{2} + \epsilon}} \qquad &//\ normalize \\
        y_i &\gets \gamma \hat{x_i} + \beta \qquad &//\ scale\ and\ shift
C
ceci3 已提交
1083

1084 1085
    - :math:`\epsilon` : add a smaller value to the variance to prevent division by zero
    - :math:`\gamma` : trainable scale parameter vector
1086
    - :math:`\beta` : trainable shift parameter vector
C
ceci3 已提交
1087

1088
    Note:
1089 1090 1091
        If you want to use container to pack your model and has ``SyncBatchNorm`` in the
        evaluation phase, please use ``nn.LayerList`` or ``nn.Sequential`` instead of
        ``list`` to pack the model.
1092

C
ceci3 已提交
1093 1094 1095 1096 1097 1098 1099
    Parameters:
        num_features(int): Indicate the number of channels of the input ``Tensor``.
        epsilon(float, optional): The small value added to the variance to prevent division by zero. Default: 1e-5.
        momentum(float, optional): The value used for the moving_mean and moving_var computation. Default: 0.9.
        weight_attr(ParamAttr|bool, optional): The parameter attribute for Parameter `scale`
             of this layer. If it is set to None or one attribute of ParamAttr, this layerr
             will create ParamAttr as param_attr. If the Initializer of the param_attr
1100
             is not set, the parameter is initialized with ones. If it is set to False,
C
ceci3 已提交
1101 1102 1103 1104
             this layer will not have trainable scale parameter. Default: None.
        bias_attr(ParamAttr|bool, optional): The parameter attribute for the bias of this layer.
             If it is set to None or one attribute of ParamAttr, this layer
             will create ParamAttr as bias_attr. If the Initializer of the bias_attr
1105
             is not set, the bias is initialized zero. If it is set to False, this layer will not
C
ceci3 已提交
1106 1107 1108 1109 1110 1111 1112 1113 1114
             have trainable bias parameter. Default: None.

    Shapes:
        input: Tensor that the dimension from 2 to 5.
        output: Tensor with the same shape as input.

    Examples:
        .. code-block:: python

1115 1116
          # required: gpu

C
ceci3 已提交
1117 1118 1119
          import paddle
          import paddle.nn as nn

1120
          x = paddle.to_tensor([[[[0.3, 0.4], [0.3, 0.07]], [[0.83, 0.37], [0.18, 0.93]]]]).astype('float32')
C
ceci3 已提交
1121 1122

          if paddle.is_compiled_with_cuda():
C
ceci3 已提交
1123 1124
              sync_batch_norm = nn.SyncBatchNorm(2)
              hidden1 = sync_batch_norm(x)
C
ceci3 已提交
1125
              print(hidden1)
1126 1127 1128 1129 1130 1131
              # Tensor(shape=[1, 2, 2, 2], dtype=float32, place=Place(gpu:0), stop_gradient=False,
              #        [[[[ 0.26824948,  1.09363246],
              #           [ 0.26824948, -1.63013160]],

              #          [[ 0.80956620, -0.66528702],
              #           [-1.27446556,  1.13018656]]]])
C
ceci3 已提交
1132 1133
    """

1134 1135 1136 1137 1138 1139 1140 1141 1142 1143
    def __init__(
        self,
        num_features,
        momentum=0.9,
        epsilon=1e-05,
        weight_attr=None,
        bias_attr=None,
        data_format='NCHW',
        name=None,
    ):
1144
        super().__init__(
1145 1146 1147 1148 1149 1150 1151 1152 1153
            num_features,
            momentum,
            epsilon,
            weight_attr,
            bias_attr,
            data_format,
            None,
            name,
        )
C
ceci3 已提交
1154

C
ceci3 已提交
1155 1156 1157 1158 1159 1160 1161 1162 1163 1164
    def _check_data_format(self):
        if self._data_format in ['NCHW', 'NCDHW', 'NC', 'NCL']:
            self._data_format = 'NCHW'
        elif self._data_format in ["NHWC", "NDHWC", 'NLC']:
            self._data_format = 'NHWC'
        else:
            raise ValueError(
                'expected \'NCDHW\', \'NDHWC\', \'NCL\', \'NLC\', \'NC\', \'NCHW\', \'NHWC\' for data_format'
            )

C
ceci3 已提交
1165
    def forward(self, x):
C
ceci3 已提交
1166
        self._check_data_format()
C
ceci3 已提交
1167 1168 1169 1170 1171 1172
        # create output
        # mean and mean_out share the same memory
        mean_out = self._mean
        # variance and variance out share the same memory
        variance_out = self._variance

1173 1174
        # train mode: use mini-batch stats, eval mode: use global stats
        # use_global_stats only support False in sync_batch_norm
1175
        if in_dygraph_mode():
1176
            sync_batch_norm_out, _, _, _, _, _ = _C_ops.sync_batch_norm_(
1177 1178 1179
                x,
                self._mean,
                self._variance,
1180 1181 1182
                self.weight,
                self.bias,
                not self.training,
1183 1184 1185 1186 1187 1188
                self._momentum,
                self._epsilon,
                self._data_format,
                False,
                False,
            )
1189 1190 1191
            return sync_batch_norm_out

        elif in_dynamic_mode():
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209
            attrs = (
                "momentum",
                self._momentum,
                "epsilon",
                self._epsilon,
                "is_test",
                not self.training,
                "data_layout",
                self._data_format,
                "use_mkldnn",
                False,
                "fuse_with_relu",
                False,
                "use_global_stats",
                False,
                'trainable_statistics',
                False,
            )
1210
            sync_batch_norm_out, _, _, _, _, _ = _legacy_C_ops.sync_batch_norm(
1211 1212 1213 1214 1215 1216 1217 1218 1219
                x,
                self.weight,
                self.bias,
                self._mean,
                self._variance,
                mean_out,
                variance_out,
                *attrs
            )
C
ceci3 已提交
1220 1221
            return sync_batch_norm_out

1222 1223 1224
        check_variable_and_dtype(
            x, 'input', ['float16', 'float32', 'float64'], 'SyncBatchNorm'
        )
C
ceci3 已提交
1225 1226 1227 1228 1229

        attrs = {
            "momentum": self._momentum,
            "epsilon": self._epsilon,
            "is_test": not self.training,
1230
            "data_layout": self._data_format,
C
ceci3 已提交
1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
            "use_mkldnn": False,
            "fuse_with_relu": False,
            "use_global_stats": False,
            "trainable_statistics": False,
        }

        inputs = {
            "X": [x],
            "Scale": [self.weight],
            "Bias": [self.bias],
            "Mean": [self._mean],
1242
            "Variance": [self._variance],
C
ceci3 已提交
1243 1244 1245
        }

        saved_mean = self._helper.create_variable_for_type_inference(
1246 1247
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1248
        saved_variance = self._helper.create_variable_for_type_inference(
1249 1250
            dtype=self._dtype, stop_gradient=True
        )
C
ceci3 已提交
1251
        sync_batch_norm_out = self._helper.create_variable_for_type_inference(
1252 1253
            self._dtype
        )
C
ceci3 已提交
1254 1255 1256 1257 1258 1259

        outputs = {
            "Y": [sync_batch_norm_out],
            "MeanOut": [mean_out],
            "VarianceOut": [variance_out],
            "SavedMean": [saved_mean],
1260
            "SavedVariance": [saved_variance],
C
ceci3 已提交
1261 1262
        }

1263 1264 1265
        self._helper.append_op(
            type="sync_batch_norm", inputs=inputs, outputs=outputs, attrs=attrs
        )
C
ceci3 已提交
1266
        return sync_batch_norm_out
1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284

    @classmethod
    def convert_sync_batchnorm(cls, layer):
        """
        Helper function to convert :class: `paddle.nn.BatchNorm*d` layers in the model to :class: `paddle.nn.SyncBatchNorm` layers.

        Parameters:
            layer(paddle.nn.Layer): model containing one or more `BatchNorm*d` layers.

        Returns:
            The original model with converted SyncBatchNorm layers. If BatchNorm*d layer in the model, use SyncBatchNorm layer instead.

        Examples:

            .. code-block:: python
                import paddle
                import paddle.nn as nn

C
cnn 已提交
1285
                model = nn.Sequential(nn.Conv2D(3, 5, 3), nn.BatchNorm2D(5))
1286 1287 1288 1289 1290
                sync_model = nn.SyncBatchNorm.convert_sync_batchnorm(model)

        """
        layer_output = layer
        if isinstance(layer, _BatchNormBase):
1291
            if (
1292
                layer._weight_attr is not None
1293
                and not isinstance(layer._weight_attr, bool)
1294
                and layer._weight_attr.name is not None
1295
            ):
C
ceci3 已提交
1296
                layer._weight_attr.name = layer._weight_attr.name + '_sync'
1297
            if (
1298
                layer._bias_attr is not None
1299
                and not isinstance(layer._bias_attr, bool)
1300
                and layer._bias_attr.name is not None
1301
            ):
C
ceci3 已提交
1302 1303
                layer._bias_attr.name = layer._bias_attr.name + '_sync'

1304 1305 1306 1307 1308 1309 1310 1311 1312
            layer_output = SyncBatchNorm(
                layer._num_features,
                layer._momentum,
                layer._epsilon,
                layer._weight_attr,
                layer._bias_attr,
                layer._data_format,
                layer._name,
            )
1313

1314 1315 1316 1317
            if (
                layer._weight_attr is not False
                and layer._bias_attr is not False
            ):
1318 1319 1320 1321 1322 1323
                with no_grad():
                    layer_output.weight = layer.weight
                    layer_output.bias = layer.bias
            layer_output._mean = layer._mean
            layer_output._variance = layer._variance

C
ceci3 已提交
1324
        for name, sublayer in layer.named_children():
1325 1326 1327
            layer_output.add_sublayer(
                name, cls.convert_sync_batchnorm(sublayer)
            )
1328 1329
        del layer
        return layer_output
1330 1331


Z
zhiboniu 已提交
1332
class LocalResponseNorm(Layer):
1333
    """
1334 1335
    Local Response Normalization performs a type of "lateral inhibition" by normalizing over local input regions.
    For more information, please refer to `ImageNet Classification with Deep Convolutional Neural Networks <https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf>`_
1336

1337
    See more details in :ref:`api_paddle_nn_functional_local_response_norm` .
1338

1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353
    Parameters:
        size (int): The number of channels to sum over.
        alpha (float, optional): The scaling parameter, positive. Default:1e-4
        beta (float, optional): The exponent, positive. Default:0.75
        k (float, optional): An offset, positive. Default: 1.0
        data_format (str, optional): Specify the data format of the input, and the data format of the output
            will be consistent with that of the input. An optional string from:
            If input is 3-D Tensor, the string could be `"NCL"` or `"NLC"` . When it is `"NCL"`,
            the data is stored in the order of: `[batch_size, input_channels, feature_length]`.
            If input is 4-D Tensor, the string could be  `"NCHW"`, `"NHWC"`. When it is `"NCHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_height, input_width]`.
            If input is 5-D Tensor, the string could be  `"NCDHW"`, `"NDHWC"` . When it is `"NCDHW"`,
            the data is stored in the order of: `[batch_size, input_channels, input_depth, input_height, input_width]`.
        name (str, optional): Name for the operation (optional, default is None). For more information,
            please refer to :ref:`api_guide_Name`.
1354

1355 1356 1357
    Shape:
        - input: 3-D/4-D/5-D tensor.
        - output: 3-D/4-D/5-D tensor, the same shape as input.
1358

1359
    Examples:
1360

1361
    .. code-block:: python
1362

1363 1364 1365 1366 1367 1368 1369
        import paddle

        x = paddle.rand(shape=(3, 3, 112, 112), dtype="float32")
        m = paddle.nn.LocalResponseNorm(size=5)
        y = m(x)
        print(y.shape)  # [3, 3, 112, 112]
    """
1370

1371 1372 1373 1374 1375 1376 1377 1378 1379
    def __init__(
        self,
        size,
        alpha=0.0001,
        beta=0.75,
        k=1.0,
        data_format="NCHW",
        name=None,
    ):
1380
        super().__init__()
1381 1382 1383 1384 1385 1386 1387 1388
        self.size = size
        self.alpha = alpha
        self.beta = beta
        self.k = k
        self.data_format = data_format
        self.name = name

    def forward(self, input):
1389 1390 1391 1392 1393 1394 1395 1396 1397
        out = F.local_response_norm(
            input,
            self.size,
            self.alpha,
            self.beta,
            self.k,
            self.data_format,
            self.name,
        )
1398
        return out
1399 1400 1401

    def extra_repr(self):
        main_str = 'size={}, alpha={}, beta={}, k={}'.format(
1402 1403
            self.size, self.alpha, self.beta, self.k
        )
1404
        if self.data_format != 'NCHW':
1405 1406 1407 1408
            main_str += ', data_format={}'.format(self.data_format)
        if self.name is not None:
            main_str += ', name={}'.format(self.name)
        return main_str