layer.py 15.8 KB
Newer Older
Q
qiaolongfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67
"""
Before this new package paddle.v2.layer, users would need to use functions
in paddle.trainer_config_helpers.layers to configure networks.

The Old Way:
=========
This old way requires that the creation of a network be defined in a Python
function, say network_config, and that this Python function being passed to
paddle.trainer_config_helpers.parse_network_config for the creation of
protobuf message description of this network.

```python
def network_config():
  img = paddle.trainer_config_helpers.data_layer(name="pixel", size=784)
  inference = paddle.trainer_config_helpers.fc_layer(
    input=img,
    size=10,
    act=paddle.trainer_config_helpers.SoftmaxActivation())
  cost = paddle.trainer_config_helpers.classification_cost(
    input=inference,
    label=paddle.trainer_config_helpers.data_layer(name="label", size=10))

proto_desc = parse_network_config(network_config)
```

When parse_network_config executes network_config, those layer definition
functions like data_layer and fc_layer would change some Python global variables,
so that after the execution, parse_network_config could collect information from
these global variables and generates the protobuf message.



The New Way:
=========
In this PR, we define a function in paddle.v2.layer which creates a Python
class for each layer creation function in paddle.trainer_config_helpers.layers.
Users can use create a network as follows:

```python
img = paddle.v2.layer.data(name="pixel", size=784)
inference = paddle.v2.layer.fc(input=img, size=10, act=paddle.v2.layer.Softmax())
cost = paddle.v2.layer.classification(
  input=inference,
  label=paddle.v2.layer.data(name="label", size=10))

parameters = paddle.v2.parameters.create(cost)
```

This new way doesn't require those invocations to layer definition functions
to be in a Python function but could be anywhere.

Also, the creation of a protobuf message is hidden in the invocation of
paddle.v2.parameters.create, no longer exposed to users.
"""
Q
qiaolongfei 已提交
68

Q
qiaolongfei 已提交
69 70
import collections

Q
qiaolongfei 已提交
71 72 73
import paddle.trainer_config_helpers as conf_helps
from paddle.trainer_config_helpers.config_parser_utils import \
    parse_network_config as __parse__
74 75
from paddle.trainer_config_helpers.default_decorators import wrap_act_default
from paddle.trainer_config_helpers.default_decorators import wrap_bias_attr_default
Q
qiaolongfei 已提交
76
from paddle.trainer_config_helpers.default_decorators import wrap_name_default
77
from paddle.trainer_config_helpers.layers import layer_support
Q
qiaolongfei 已提交
78

L
Luo Tao 已提交
79
import activation
Q
qiaolongfei 已提交
80
import data_type
Q
qiaolongfei 已提交
81

Q
qiaolongfei 已提交
82
__all__ = [
L
Luo Tao 已提交
83 84 85 86 87 88 89 90
    'parse_network', 'data', 'fc', 'conv_shift', 'img_conv', 'img_pool', 'spp',
    'maxout', 'img_cmrnorm', 'batch_norm', 'sum_to_one_norm', 'recurrent',
    'lstmemory', 'grumemory', 'pool', 'last_seq', 'first_seq', 'concat',
    'seq_concat', 'block_expand', 'expand', 'repeat', 'seq_reshape', 'addto',
    'linear_comb', 'interpolation', 'bilinear_interp', 'power', 'scaling',
    'slope_intercept', 'tensor', 'cos_sim', 'trans', 'max_id', 'sampling_id',
    'pad', 'classification_cost', 'cross_entropy_cost',
    'cross_entropy_with_selfnorm_cost', 'regression_cost',
L
Luo Tao 已提交
91
    'multi_binary_label_cross_entropy_cost', 'rank_cost', 'lambda_cost',
L
Luo Tao 已提交
92
    'sum_cost', 'huber_cost', 'crf', 'crf_decoding', 'ctc', 'warp_ctc', 'nce',
93
    'hsigmoid', 'eos', 'memory', 'embedding', 'recurrent_group'
Q
qiaolongfei 已提交
94 95
]

D
dangqingqing 已提交
96 97 98 99 100 101 102
__projection_names__ = filter(lambda x: x.endswith('_projection'),
                              dir(conf_helps))
__all__ += __projection_names__

__operator_names__ = filter(lambda x: x.endswith('_operator'), dir(conf_helps))
__all__ += __operator_names__

Q
qiaolongfei 已提交
103

Q
qiaolongfei 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
def parse_network(*outputs):
    """
    parse all output layers and then generate a model config proto.
    :param outputs:
    :return:
    """

    def __real_func__():
        context = dict()
        real_output = [each.to_proto(context=context) for each in outputs]
        conf_helps.outputs(real_output)

    return __parse__(__real_func__)


Q
qiaolongfei 已提交
119
class Layer(object):
120
    def __init__(self, name=None, parent_layers=None):
Q
qiaolongfei 已提交
121
        assert isinstance(parent_layers, dict)
Q
qiaolongfei 已提交
122
        self.name = name
Q
qiaolongfei 已提交
123
        self.__parent_layers__ = parent_layers
Q
qiaolongfei 已提交
124 125 126 127 128 129

    def to_proto(self, context):
        """
        function to set proto attribute
        """
        kwargs = dict()
Q
qiaolongfei 已提交
130 131
        for layer_name in self.__parent_layers__:
            if not isinstance(self.__parent_layers__[layer_name],
Q
qiaolongfei 已提交
132
                              collections.Sequence):
Q
qiaolongfei 已提交
133
                v1_layer = self.__parent_layers__[layer_name].to_proto(
Q
qiaolongfei 已提交
134 135
                    context=context)
            else:
Q
qiaolongfei 已提交
136 137 138
                v1_layer = map(lambda x: x.to_proto(context=context),
                               self.__parent_layers__[layer_name])
            kwargs[layer_name] = v1_layer
Q
qiaolongfei 已提交
139

140 141
        if self.name is None:
            return self.to_proto_impl(**kwargs)
142 143
        elif isinstance(self, MemoryV2):
            return self.to_proto_impl(**kwargs)
D
dangqingqing 已提交
144
        elif self.name not in context:
Q
qiaolongfei 已提交
145
            context[self.name] = self.to_proto_impl(**kwargs)
Q
qiaolongfei 已提交
146

Q
qiaolongfei 已提交
147 148 149 150 151 152
        return context[self.name]

    def to_proto_impl(self, **kwargs):
        raise NotImplementedError()


L
Luo Tao 已提交
153 154 155
def __convert_to_v2__(method_name, parent_names, is_default_name=True):
    if is_default_name:
        wrapper = wrap_name_default(name_prefix=method_name)
Q
qiaolongfei 已提交
156 157 158
    else:
        wrapper = None

Q
qiaolongfei 已提交
159
    class V2LayerImpl(Layer):
D
dangqingqing 已提交
160
        def __init__(self, **kwargs):
Q
qiaolongfei 已提交
161 162 163
            parent_layers = dict()
            other_kwargs = dict()
            for pname in parent_names:
L
Luo Tao 已提交
164 165
                if kwargs.has_key(pname):
                    parent_layers[pname] = kwargs[pname]
Q
qiaolongfei 已提交
166 167 168 169 170

            for key in kwargs.keys():
                if key not in parent_names:
                    other_kwargs[key] = kwargs[key]

D
dangqingqing 已提交
171
            name = kwargs.get('name', None)
172
            super(V2LayerImpl, self).__init__(name, parent_layers)
Q
qiaolongfei 已提交
173 174 175 176 177 178 179 180 181 182 183
            self.__other_kwargs__ = other_kwargs

        if wrapper is not None:
            __init__ = wrapper(__init__)

        def to_proto_impl(self, **kwargs):
            args = dict()
            for each in kwargs:
                args[each] = kwargs[each]
            for each in self.__other_kwargs__:
                args[each] = self.__other_kwargs__[each]
184
            return getattr(conf_helps, method_name)(**args)
Q
qiaolongfei 已提交
185

Q
qiaolongfei 已提交
186
    return V2LayerImpl
Q
qiaolongfei 已提交
187 188


Q
qiaolongfei 已提交
189 190 191 192 193 194 195
"""
Some layer may need some special config, and can not use __convert_to_v2__ to convert.
So we also need to implement some special LayerV2.
"""


class DataLayerV2(Layer):
Q
qiaolongfei 已提交
196
    def __init__(self, name, type, **kwargs):
197
        assert isinstance(type, data_type.InputType)
Q
qiaolongfei 已提交
198

Q
qiaolongfei 已提交
199
        self.type = type
Q
qiaolongfei 已提交
200 201
        self.__method_name__ = 'data_layer'
        self.__kwargs__ = kwargs
Q
qiaolongfei 已提交
202 203 204 205 206

        super(DataLayerV2, self).__init__(name=name, parent_layers=dict())

    def to_proto_impl(self, **kwargs):
        args = dict()
Q
qiaolongfei 已提交
207
        args['size'] = self.type.dim
Q
qiaolongfei 已提交
208 209
        for each in kwargs:
            args[each] = kwargs[each]
Q
qiaolongfei 已提交
210 211
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
212 213 214
        return getattr(conf_helps, self.__method_name__)(name=self.name, **args)


Q
qiaolongfei 已提交
215 216 217 218
class MemoryV2(Layer):
    def __init__(self, name, size, **kwargs):
        self.name = name
        self.size = size
Q
qiaolongfei 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231

        parent_names = ['boot_layer']
        parent_layers = dict()
        other_kwargs = dict()
        for pname in parent_names:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]

        for key in kwargs.keys():
            if key not in parent_names:
                other_kwargs[key] = kwargs[key]
        super(MemoryV2, self).__init__(name=name, parent_layers=parent_layers)
        self.__kwargs__ = other_kwargs
Q
qiaolongfei 已提交
232 233 234 235 236 237 238

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
Q
qiaolongfei 已提交
239

Q
qiaolongfei 已提交
240 241 242
        return conf_helps.memory(name=self.name, size=self.size, **args)


243
class LayerOutputV2(Layer):
Q
qiaolongfei 已提交
244 245 246 247 248
    """
    LayerOutputV2 is used to store the result of LayerOutput in v1 api.
    It will not store it's parents because layer_output has been parsed already.
    """

249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
    def __init__(self, layer_output):
        assert isinstance(layer_output, conf_helps.LayerOutput)
        self.layer_output = layer_output
        super(LayerOutputV2, self).__init__(
            name=layer_output.name, parent_layers=dict())

    def to_proto_impl(self):
        return self.layer_output


class RecurrentGroupV2(Layer):
    def __init__(self, name, **kwargs):
        self.__parent_names__ = ['input']
        other_kwargs = dict()
        parent_layers = dict()
        for pname in self.__parent_names__:
            if kwargs.has_key(pname):
                parent_layers[pname] = kwargs[pname]
        for key in kwargs.keys():
            if key not in self.__parent_names__:
                other_kwargs[key] = kwargs[key]
        self.__kwargs__ = other_kwargs

        super(RecurrentGroupV2, self).__init__(
            name=name, parent_layers=parent_layers)

Q
qiaolongfei 已提交
275 276 277
    wrapper = wrap_name_default(name_prefix='recurrent_group')
    __init__ = wrapper(__init__)

278
    def to_proto_impl(self, **kwargs):
Q
qiaolongfei 已提交
279
        def in_args_converter(*in_args):
280 281 282 283 284 285 286 287 288 289 290 291 292
            if not isinstance(in_args, collections.Sequence):
                in_args = [in_args]
            return [LayerOutputV2(input) for input in in_args]

        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__kwargs__:
            args[each] = self.__kwargs__[each]
        return conf_helps.recurrent_group(
            name=self.name, in_args_converter=in_args_converter, **args)


293 294 295 296 297 298 299 300 301 302
class MixedLayerV2(Layer):
    """
    This class is use to support `with` grammar. If not, the following code
    could convert mixed_layer simply.

        mixed = __convert_to_v2__(
            'mixed_layer', name_prefix='mixed', parent_names=['input'])
    """

    class AddToSealedMixedLayerExceptionV2(Exception):
D
dangqingqing 已提交
303
        pass
304 305 306 307 308 309 310 311 312 313

    def __init__(self,
                 size=0,
                 input=None,
                 name=None,
                 act=None,
                 bias_attr=None,
                 layer_attr=None):
        self.__method_name__ = 'mixed_layer'
        self.finalized = False
D
dangqingqing 已提交
314
        self.__inputs__ = []
315
        if input is not None:
D
dangqingqing 已提交
316
            self.__inputs__ = input
317

D
dangqingqing 已提交
318 319
        other_kwargs = dict()
        other_kwargs['name'] = name
320 321 322 323 324
        other_kwargs['size'] = size
        other_kwargs['act'] = act
        other_kwargs['bias_attr'] = bias_attr
        other_kwargs['layer_attr'] = layer_attr

D
dangqingqing 已提交
325 326
        parent_layers = {"input": self.__inputs__}
        super(MixedLayerV2, self).__init__(name, parent_layers)
327 328 329 330
        self.__other_kwargs__ = other_kwargs

    def __iadd__(self, other):
        if not self.finalized:
D
dangqingqing 已提交
331
            self.__inputs__.append(other)
332 333 334 335 336
            return self
        else:
            raise MixedLayerTypeV2.AddToSealedMixedLayerExceptionV2()

    def __enter__(self):
D
dangqingqing 已提交
337
        assert len(self.__inputs__) == 0
338 339 340 341 342 343 344 345 346 347 348
        return self

    def __exit__(self, *args, **kwargs):
        self.finalized = True

    def to_proto_impl(self, **kwargs):
        args = dict()
        for each in kwargs:
            args[each] = kwargs[each]
        for each in self.__other_kwargs__:
            args[each] = self.__other_kwargs__[each]
D
dangqingqing 已提交
349
        return getattr(conf_helps, self.__method_name__)(**args)
350 351 352


@wrap_name_default("mixed")
D
dangqingqing 已提交
353
@wrap_act_default(act=activation.Linear())
354 355 356 357 358 359 360 361 362 363 364
@wrap_bias_attr_default(has_bias=False)
@layer_support(conf_helps.layers.ERROR_CLIPPING, conf_helps.layers.DROPOUT)
def mixed(size=0,
          name=None,
          input=None,
          act=None,
          bias_attr=False,
          layer_attr=None):
    return MixedLayerV2(size, input, name, act, bias_attr, layer_attr)


Q
qiaolongfei 已提交
365
data = DataLayerV2
L
Luo Tao 已提交
366 367
AggregateLevel = conf_helps.layers.AggregateLevel
ExpandLevel = conf_helps.layers.ExpandLevel
368
recurrent_group = RecurrentGroupV2
Q
qiaolongfei 已提交
369
memory = MemoryV2
Q
qiaolongfei 已提交
370

L
Luo Tao 已提交
371 372 373 374
layer_list = [
    # [V2LayerImpl, V1_method_name, parent_names]
    # fully connected layers
    ['fc', 'fc_layer', ['input']],
375
    ['embedding', 'embedding_layer', ['input']],
L
Luo Tao 已提交
376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
    # conv layers
    ['conv_shift', 'conv_shift_layer', ['a', 'b']],
    ['img_conv', 'img_conv_layer', ['input']],
    # image pooling layers
    ['img_pool', 'img_pool_layer', ['input']],
    ['spp', 'spp_layer', ['input']],
    ['maxout', 'maxout_layer', ['input']],
    # norm layers
    ['img_cmrnorm', 'img_cmrnorm_layer', ['input']],
    ['batch_norm', 'batch_norm_layer', ['input']],
    ['sum_to_one_norm', 'sum_to_one_norm_layer', ['input']],
    # recurrent layers
    ['recurrent', 'recurrent_layer', ['input']],
    ['lstmemory', 'lstmemory', ['input']],
    ['grumemory', 'grumemory', ['input']],
    # aggregate layers
    ['pool', 'pooling_layer', ['input']],
    ['last_seq', 'last_seq', ['input']],
    ['first_seq', 'first_seq', ['input']],
    ['concat', 'concat_layer', ['input']],
    ['seq_concat', 'seq_concat_layer', ['a', 'b']],
    # reshaping layers
    ['block_expand', 'block_expand_layer', ['input']],
    ['expand', 'expand_layer', ['input', 'expand_as']],
    ['repeat', 'repeat_layer', ['input']],
    ['rotate', 'rotate_layer', ['input']],
    ['seq_reshape', 'seq_reshape_layer', ['input']],
    # math layers
    ['addto', 'addto_layer', ['input']],
    ['linear_comb', 'linear_comb_layer', ['weights', 'vectors']],
    ['interpolation', 'interpolation_layer', ['input', 'weight']],
    ['bilinear_interp', 'bilinear_interp_layer', ['input']],
    ['power', 'power_layer', ['input', 'weight']],
    ['scaling', 'scaling_layer', ['input', 'weight']],
    ['slope_intercept', 'slope_intercept_layer', ['input']],
    ['tensor', 'tensor_layer', ['a', 'b']],
    ['cos_sim', 'cos_sim', ['a', 'b']],
    ['trans', 'trans_layer', ['input']],
    # sampling layers
    ['max_id', 'maxid_layer', ['input']],
    ['sampling_id', 'sampling_id_layer', ['input']],
    # slicing and joining layers
    ['pad', 'pad_layer', ['input']],
    # cost layers
    [
        'classification_cost', 'classification_cost',
        ['input', 'label', 'weight']
    ],
    ['regression_cost', 'regression_cost', ['input', 'label', 'weight']],
    ['cross_entropy_cost', 'cross_entropy', ['input', 'label']],
    [
        'cross_entropy_with_selfnorm_cost', 'cross_entropy_with_selfnorm',
        ['input', 'label']
    ],
    [
        'multi_binary_label_cross_entropy_cost',
        'multi_binary_label_cross_entropy', ['input', 'label']
    ],
    ['rank_cost', 'rank_cost', ['left', 'right', 'label', 'weight']],
    ['lambda_cost', 'lambda_cost', ['input', 'score']],
    ['sum_cost', 'sum_cost', ['input']],
    ['huber_cost', 'huber_cost', ['input', 'label']],
    ['crf', 'crf_layer', ['input', 'label']],
    ['crf_decoding', 'crf_decoding_layer', ['input']],
    ['ctc', 'ctc_layer', ['input', 'label']],
    ['warp_ctc', 'warp_ctc_layer', ['input', 'label']],
    ['nce', 'nce_layer', ['input', 'label']],
    ['hsigmoid', 'hsigmoid', ['input', 'label']],
    # check layers
    ['eos', 'eos_layer', ['input']]
]
for l in layer_list:
    globals()[l[0]] = __convert_to_v2__(l[1], l[2])
Q
qiaolongfei 已提交
449

450
# convert projection
D
dangqingqing 已提交
451
for prj in __projection_names__:
L
Luo Tao 已提交
452 453
    globals()[prj] = __convert_to_v2__(
        prj, parent_names=['input'], is_default_name=False)
454 455 456 457 458 459 460 461

# convert operator
operator_list = [
    # [V1_method_name, parent_names],
    ['dotmul_operator', ['a', 'b']],
    ['conv_operator', ['img', 'filter']]
]
for op in operator_list:
L
Luo Tao 已提交
462 463
    globals()[op[0]] = __convert_to_v2__(
        op[0], parent_names=op[1], is_default_name=False)