squared_l2_distance_op.h 4.5 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
23 24 25
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
28
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
29

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
31
class SquaredL2DistanceKernel : public framework::OpKernel<T> {
32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36 37 38 39 40 41
    auto* in0 = context.Input<Tensor>("X");
    auto* in1 = context.Input<Tensor>("Y");
    auto* out0 = context.Output<Tensor>("sub_result");
    auto* out1 = context.Output<Tensor>("Out");

    auto in0_dims = in0->dims();
    auto in1_dims = in1->dims();

42
    int cols = in0->numel() / in0_dims[0];
43 44 45 46 47 48 49 50 51
    // reduce dimensions except the first
    auto x =
        EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
    auto y =
        EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));

    out0->mutable_data<T>(context.GetPlace());
    out1->mutable_data<T>(context.GetPlace());
    auto sub_result = EigenMatrix<T>::From(*out0);
52
    auto z = EigenVector<T>::Flatten(*out1);
53

Q
QI JUN 已提交
54 55
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
56 57
    auto x_dims = x.dimensions();
    auto y_dims = y.dimensions();
58
    // buffer the substraction result
59
    if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
Y
yangyaming 已提交
60 61
      sub_result.device(place) =
          x -
62
          y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
63
    } else {
64
      sub_result.device(place) = x - y;
65
    }
Y
yangyaming 已提交
66
    auto sub_res_pow2 = sub_result * sub_result;
67
    z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
68 69 70
  }
};

Q
QI JUN 已提交
71
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
72
class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
73 74
 public:
  void Compute(const framework::ExecutionContext& context) const override {
75 76 77 78
    auto* in0 = context.Input<Tensor>("sub_result");
    auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
    auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
79

L
liuwei1031 已提交
80 81 82
    PADDLE_ENFORCE_NOT_NULL(x_g);
    PADDLE_ENFORCE_NOT_NULL(y_g);

83 84
    auto sub_result = EigenMatrix<T>::From(*in0);
    auto out_grad = EigenMatrix<T>::From(*in1);
85

86 87
    auto x_dims = x_g->dims();
    auto y_dims = y_g->dims();
88

89
    int cols = x_g->numel() / x_dims[0];
90
    // calculate gradient
91 92 93
    auto grad_mat = 2 *
                    (out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
                    sub_result;
94 95

    // propagate back to input
Q
QI JUN 已提交
96 97
    auto& eigen_place =
        *context.template device_context<DeviceContext>().eigen_device();
98

L
liuwei1031 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
    x_g->mutable_data<T>(context.GetPlace());
    // eigen matrix
    auto x_grad =
        EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
    // dimensions are same with subResult
    x_grad.device(eigen_place) = grad_mat;

    y_g->mutable_data<T>(context.GetPlace());

    PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
                      "First dimension of gradient must be greater or "
                      "equal than first dimension of target.");

    if (sub_result.dimensions()[0] == y_dims[0]) {
      auto y_grad =
          EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
      y_grad.device(eigen_place) = -1 * grad_mat;
    } else {
      auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
      auto y_grad = EigenVector<T>::Flatten(*y_g);
      y_grad.device(eigen_place) = col_sum_res;
120
    }
121 122 123 124 125
  }
};

}  // namespace operators
}  // namespace paddle