squared_l2_distance_op.h 4.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
Y
Yi Wang 已提交
16 17
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
18 19 20 21 22

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
23 24 25
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
26 27
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
28
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;
29

Q
QI JUN 已提交
30
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
31
class SquaredL2DistanceKernel : public framework::OpKernel<T> {
32 33
 public:
  void Compute(const framework::ExecutionContext& context) const override {
34 35 36 37 38 39 40 41
    auto* in0 = context.Input<Tensor>("X");
    auto* in1 = context.Input<Tensor>("Y");
    auto* out0 = context.Output<Tensor>("sub_result");
    auto* out1 = context.Output<Tensor>("Out");

    auto in0_dims = in0->dims();
    auto in1_dims = in1->dims();

42
    int cols = in0->numel() / in0_dims[0];
43 44 45 46 47 48 49 50 51
    // reduce dimensions except the first
    auto x =
        EigenMatrix<T>::From(*in0, framework::make_ddim({in0_dims[0], cols}));
    auto y =
        EigenMatrix<T>::From(*in1, framework::make_ddim({in1_dims[0], cols}));

    out0->mutable_data<T>(context.GetPlace());
    out1->mutable_data<T>(context.GetPlace());
    auto sub_result = EigenMatrix<T>::From(*out0);
52
    auto z = EigenVector<T>::Flatten(*out1);
53

Q
QI JUN 已提交
54 55
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
56 57
    auto x_dims = x.dimensions();
    auto y_dims = y.dimensions();
58
    // buffer the substraction result
59
    if (y_dims[0] == 1 && x_dims[0] > y_dims[0]) {
Y
yangyaming 已提交
60 61
      sub_result.device(place) =
          x -
62
          y.broadcast(Eigen::array<int, 2>({{static_cast<int>(x_dims[0]), 1}}));
63
    } else {
64
      sub_result.device(place) = x - y;
65
    }
Y
yangyaming 已提交
66
    auto sub_res_pow2 = sub_result * sub_result;
67
    z.device(place) = sub_res_pow2.sum(Eigen::array<int, 1>({{1}}));
68 69 70
  }
};

Q
QI JUN 已提交
71
template <typename DeviceContext, typename T>
Y
Yu Yang 已提交
72
class SquaredL2DistanceGradKernel : public framework::OpKernel<T> {
73 74
 public:
  void Compute(const framework::ExecutionContext& context) const override {
75 76 77 78
    auto* in0 = context.Input<Tensor>("sub_result");
    auto* in1 = context.Input<Tensor>(framework::GradVarName("Out"));
    auto* x_g = context.Output<Tensor>(framework::GradVarName("X"));
    auto* y_g = context.Output<Tensor>(framework::GradVarName("Y"));
79

80 81
    auto sub_result = EigenMatrix<T>::From(*in0);
    auto out_grad = EigenMatrix<T>::From(*in1);
82

83 84
    auto x_dims = x_g->dims();
    auto y_dims = y_g->dims();
85

86
    int cols = x_g->numel() / x_dims[0];
87
    // calculate gradient
88 89 90
    auto grad_mat = 2 *
                    (out_grad.broadcast(Eigen::array<int, 2>({{1, cols}}))) *
                    sub_result;
91 92

    // propagate back to input
Q
QI JUN 已提交
93 94
    auto& eigen_place =
        *context.template device_context<DeviceContext>().eigen_device();
Y
yangyaming 已提交
95
    if (x_g) {
96 97 98 99
      x_g->mutable_data<T>(context.GetPlace());
      // eigen matrix
      auto x_grad =
          EigenMatrix<T>::From(*x_g, framework::make_ddim({x_dims[0], cols}));
100
      // dimensions are same with subResult
101
      x_grad.device(eigen_place) = grad_mat;
102
    }
103

Y
yangyaming 已提交
104
    if (y_g) {
105 106
      y_g->mutable_data<T>(context.GetPlace());

Y
yangyaming 已提交
107 108 109
      PADDLE_ENFORCE_GE(sub_result.dimensions()[0], y_dims[0],
                        "First dimension of gradient must be greater or "
                        "equal than first dimension of target.");
110

111
      if (sub_result.dimensions()[0] == y_dims[0]) {
112 113
        auto y_grad =
            EigenMatrix<T>::From(*y_g, framework::make_ddim({y_dims[0], cols}));
114
        y_grad.device(eigen_place) = -1 * grad_mat;
115
      } else {
116 117
        auto col_sum_res = -1 * (grad_mat.sum(Eigen::array<int, 1>({{0}})));
        auto y_grad = EigenVector<T>::Flatten(*y_g);
118
        y_grad.device(eigen_place) = col_sum_res;
119 120
      }
    }
121 122 123 124 125
  }
};

}  // namespace operators
}  // namespace paddle