lstmp_op.cc 14.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

Y
Yibing Liu 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8 9 10 11 12 13 14

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lstmp_op.h"
16
#include <string>
17 18 19 20 21 22 23 24 25 26

namespace paddle {
namespace operators {

class LSTMPOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
27
                   "Input(Input) of LSTMP operator should not be null.");
28
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
29
                   "Input(Weight) of LSTMP operator should not be null.");
30
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
31
                   "Input(ProjWeight) of LSTMP operator should not be null.");
32
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
33
                   "Input(Bias) of LSTMP operator should not be null.");
34 35

    PADDLE_ENFORCE(ctx->HasOutput("Projection"),
36
                   "Output(Projection) of LSTMP operator should not be null.");
37
    PADDLE_ENFORCE(ctx->HasOutput("Cell"),
38
                   "Output(Cell) of LSTMP operator should not be null.");
39
    PADDLE_ENFORCE(ctx->HasOutput("BatchGate"),
40
                   "Output(BatchGate) of LSTMP operator should not be null.");
41
    PADDLE_ENFORCE(ctx->HasOutput("BatchCellPreAct"),
42 43
                   "Output(BatchCellPreAct) of LSTMP operator should not be "
                   "null.");
44
    PADDLE_ENFORCE(ctx->HasOutput("BatchHidden"),
45
                   "Output(BatchHidden) of LSTMP operator should not be null.");
46 47

    auto in_dims = ctx->GetInputDim("Input");
48 49
    PADDLE_ENFORCE_EQ(in_dims.size(), 2,
                      "Input(X)'s rank of LSTMP operator must be 2.");
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71

    int frame_size = in_dims[1] / 4;
    auto w_dims = ctx->GetInputDim("Weight");
    auto proj_dims = ctx->GetInputDim("ProjWeight");
    PADDLE_ENFORCE_EQ(w_dims.size(), 2,
                      "The rank of Input(Weight) should be 2.");
    PADDLE_ENFORCE_EQ(w_dims[0], proj_dims[1],
                      "The first dimension of Input(Weight) "
                      "should be %d.",
                      proj_dims[1]);
    PADDLE_ENFORCE_EQ(w_dims[1], 4 * frame_size,
                      "The second dimension of Input(Weight) "
                      "should be 4 * %d.",
                      frame_size);

    PADDLE_ENFORCE_EQ(proj_dims.size(), 2,
                      "The rank of Input(ProjWeight) should be 2.");
    PADDLE_ENFORCE_EQ(proj_dims[0], frame_size,
                      "The first dimension of Input(ProjWeight) "
                      "should be %d.",
                      frame_size);

72 73
    if (ctx->HasInput("H0")) {
      PADDLE_ENFORCE(ctx->HasInput("C0"),
74 75
                     "Input(C0) of LSTMP operator should not be null after "
                     "Input(H0) provided.");
76 77
    }

78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100
    auto b_dims = ctx->GetInputDim("Bias");
    PADDLE_ENFORCE_EQ(b_dims.size(), 2, "The rank of Input(Bias) should be 2.");
    PADDLE_ENFORCE_EQ(b_dims[0], 1,
                      "The first dimension of Input(Bias) should be 1.");

    if (ctx->Attrs().Get<bool>("use_peepholes")) {
      PADDLE_ENFORCE_EQ(b_dims[1], 7 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "7 * %d if enable peepholes connection",
                        frame_size);
    } else {
      PADDLE_ENFORCE_EQ(b_dims[1], 4 * frame_size,
                        "The second dimension of Input(Bias) should be "
                        "4 * %d if disable peepholes connection",
                        frame_size);
    }

    framework::DDim out_dims({in_dims[0], frame_size});
    framework::DDim proj_out_dims({in_dims[0], proj_dims[1]});
    ctx->SetOutputDim("Projection", proj_out_dims);
    ctx->SetOutputDim("Cell", out_dims);
    ctx->SetOutputDim("BatchGate", in_dims);
    ctx->SetOutputDim("BatchCellPreAct", out_dims);
101
    ctx->SetOutputDim("BatchHidden", out_dims);
102 103 104 105 106 107 108 109
    ctx->ShareLoD("Input", "Projection");
    ctx->ShareLoD("Input", "Cell");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
110
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
111 112 113 114 115
  }
};

class LSTMPOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
116
  void Make() override {
117
    AddInput("Input",
Y
Yibing Liu 已提交
118
             "(LoDTensor) the input for sequence data, which supports "
119 120 121 122 123 124 125 126 127 128 129
             "variable-time length input sequence. The underlying tensor in "
             "this LoDTensor is a matrix with shape (T X 4D), where T is the "
             "total time steps in this mini-batch, D is the hidden size.");
    AddInput("H0",
             "(Tensor, optional) the initial hidden state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
             "batch size and D is the hidden size.")
        .AsDispensable();
    AddInput("C0",
             "(Tensor, optional) the initial cell state is an optional "
             "input. This is a tensor with shape (N x D), where N is the "
130
             "batch size. `C0` should not be null if `H0` provided.")
131 132 133
        .AsDispensable();
    AddInput("Weight",
             "(Tensor) the learnable hidden-hidden weights."
Y
Yibing Liu 已提交
134 135
             " - The shape is (P x 4D), where P is the projection layer size "
             "and  D is the hidden size."
136 137
             " - Weight = {W_cr, W_ir, W_fr, W_or}");
    AddInput("ProjWeight",
Y
Yibing Liu 已提交
138
             "(Tensor) the learnable weight of the projection layer."
139
             " - The shape is (D x P), where P is the recurrent projection "
Y
Yibing Liu 已提交
140 141
             "layer size and  D is the hidden size."
             " - ProjWeight = {W_rh}");
142
    AddInput("Bias",
Y
Yibing Liu 已提交
143 144 145
             "(Tensor) the learnable biases, which contains two parts: "
             "input-hidden biases and peephole connections weights if "
             "setting `use_peepholes` to `True`. "
146 147 148 149 150 151 152 153
             "1. `use_peepholes = False` "
             " - The shape is (1 x 4D). "
             " - Bias = {b_c, b_i, b_f, b_o}."
             "2. `use_peepholes = True` "
             " - The shape is (1 x 7D). "
             " - Bias = {b_c, b_i, b_f, b_o, W_ic, W_fc, W_oc}.");
    AddOutput("Projection",
              "(LoDTensor) the projection of the hidden state of LSTMP "
Y
Yibing Liu 已提交
154
              "operator. The shape is (T x P), and LoD is the same with the "
155 156 157 158 159 160
              "`Input`.");
    AddOutput("Cell",
              "(LoDTensor) the cell state of LSTMP operator. "
              "The shape is (T x D), and lod is the same with the `Input`.");
    AddOutput("BatchGate",
              "(LoDTensor) This LoDTensor contains input gate, forget gate "
Y
Yibing Liu 已提交
161 162 163 164 165
              "and output gate after the activations. This LoDTensor has the "
              "same shape as the reorganized input, which is also be called "
              "batch input. The LoD size is 2. The first-level LoD is the "
              "batch offsets and the second contains the indices, which "
              "denotes the position of reorganized sequence in the raw input.")
166 167
        .AsIntermediate();
    AddOutput("BatchCellPreAct",
Y
Yibing Liu 已提交
168 169 170
              "(LoDTensor) the pre-activation cell state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
171
        .AsIntermediate();
172
    AddOutput("BatchHidden",
Y
Yibing Liu 已提交
173 174 175
              "(LoDTensor) the hidden state reorganized in batch. "
              "This LoDTensor is obtained in the forward and used in the "
              "backward.")
176
        .AsIntermediate();
177 178 179 180 181 182 183 184
    AddAttr<bool>("use_peepholes",
                  "(bool, defalut: True) "
                  "whether to enable diagonal/peephole connections.")
        .SetDefault(true);
    AddAttr<bool>("is_reverse",
                  "(bool, defalut: False) "
                  "whether to compute reversed LSTMP.")
        .SetDefault(false);
185 186 187 188 189 190 191 192 193 194
    AddAttr<float>("cell_clip",
                   "(float, defalut: 0.0) "
                   "Clip for Tensor for cell state tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
    AddAttr<float>("proj_clip",
                   "(float, defalut: 0.0) "
                   "Clip for Tensor for projection tensor when clip value is "
                   "greater than 0.0")
        .SetDefault(0.0);
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
    AddAttr<std::string>(
        "gate_activation",
        "(string, default: sigmoid)"
        "The activation for input gate, forget gate and output "
        "gate, `sigmoid` by default.")
        .SetDefault("sigmoid")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("cell_activation",
                         "(string, default: tanh)"
                         "The activation for cell output, `tanh` by defalut.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
    AddAttr<std::string>("candidate_activation",
                         "(string, default: tanh)"
                         "The activation for candidate hidden state, "
                         "`tanh` by default.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
213 214 215 216 217 218
    AddAttr<std::string>("proj_activation",
                         "(string, default: tanh)"
                         "The activation for projection output, "
                         "`tanh` by defalut.")
        .SetDefault("tanh")
        .InEnum({"sigmoid", "tanh", "relu", "identity"});
219
    AddComment(R"DOC(
Y
Yibing Liu 已提交
220
Long-Short Term Memory with recurrent Projection layer (LSTMP) Operator.
221

Y
Yibing Liu 已提交
222 223 224 225 226
LSTMP has a separate projection layer after the LSTM layer, projecting the 
original hidden state to a lower-dimensional one, which is proposed to reduce 
the number of total parameters and furthermore computational complexity for 
the LSTM, espeacially for the case that the size of output units is relative 
large (https://research.google.com/pubs/archive/43905.pdf). 
227

228 229 230
The formula is as follows:

$$
231
i_t = \sigma(W_{ix}x_{t} + W_{ir}r_{t-1} + W_{ic}c_{t-1} + b_i) \\
232

233
f_t = \sigma(W_{fx}x_{t} + W_{fr}r_{t-1} + W_{fc}c_{t-1} + b_f) \\
234

235
\tilde{c_t} = act_g(W_{cx}x_t + W_{cr}r_{t-1} + b_c) \\
236

237
o_t = \sigma(W_{ox}x_{t} + W_{or}r_{t-1} + W_{oc}c_t + b_o) \\
238

239
c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\
Y
Yibing Liu 已提交
240

241
h_t = o_t \odot act_h(c_t) \\
242

Y
Yibing Liu 已提交
243
r_t = \overline{act_h}(W_{rh}h_t)
244 245 246 247 248 249 250
$$

where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix
of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$
are diagonal weight matrices for peephole connections. In our implementation,
we use vectors to reprenset these diagonal weight matrices. The b terms
denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$
Y
Yibing Liu 已提交
251
is the activation, such as logistic sigmoid function, and
252 253
$i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as
Y
Yibing Liu 已提交
254 255 256 257
the cell output activation vector $h$. Here $h$ is usually called the hidden 
state and $r$ denotes its recurrent projection. And $\tilde{c_t}$ is also 
called the candidate hidden state, whose computation is based on the current 
input and previous hidden state.
258 259 260

The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$
are the cell input and cell output activation functions and `tanh` is usually
261 262
used for them. $\overline{act_h}$ is the activation function for the 
projection output, usually using `identity` or same as $act_h$.
263 264 265

Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$
operations on the input $x_{t}$ are NOT included in this operator.
Y
Yibing Liu 已提交
266
Users can choose to use fully-connected operator before LSTMP operator.
267 268 269 270 271 272 273 274 275 276 277

)DOC");
  }
};

class LSTMPGradOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

  void InferShape(framework::InferShapeContext* ctx) const override {
    PADDLE_ENFORCE(ctx->HasInput("Input"),
278
                   "Input(Input) of LSTMP operator should not be null.");
279
    PADDLE_ENFORCE(ctx->HasInput("Projection"),
280
                   "Input(Projection) of LSTMP operator should not be null.");
281
    PADDLE_ENFORCE(ctx->HasInput("Cell"),
282
                   "Input(Cell) of LSTMP operator should not be null.");
283
    PADDLE_ENFORCE(ctx->HasInput("Weight"),
284
                   "Input(Weight) of LSTMP operator should not be null.");
285
    PADDLE_ENFORCE(ctx->HasInput("ProjWeight"),
286
                   "Input(ProjWeight) of LSTMP operator should not be null.");
287
    PADDLE_ENFORCE(ctx->HasInput("Bias"),
288
                   "Input(Bias) of LSTMP operator should not be null.");
289 290

    PADDLE_ENFORCE(ctx->HasInput("BatchGate"),
291
                   "Input(BatchGate) of LSTMP operator should not be null.");
292
    PADDLE_ENFORCE(ctx->HasInput("BatchCellPreAct"),
293
                   "Input(BatchGate) of LSTMP operator should not be null.");
294 295 296 297 298 299 300 301 302

    auto SetOutGradDim = [&ctx](const std::string& name) {
      auto g_name = framework::GradVarName(name);
      if (ctx->HasOutput(g_name))
        ctx->SetOutputDim(g_name, ctx->GetInputDim(name));
    };

    SetOutGradDim("Input");
    SetOutGradDim("Weight");
303
    SetOutGradDim("ProjWeight");
304 305 306 307 308 309 310 311 312
    SetOutGradDim("Bias");
    SetOutGradDim("H0");
    SetOutGradDim("C0");
  }

 protected:
  framework::OpKernelType GetExpectedKernelType(
      const framework::ExecutionContext& ctx) const override {
    return framework::OpKernelType(
Y
Yu Yang 已提交
313
        ctx.Input<framework::LoDTensor>("Input")->type(), ctx.device_context());
314 315 316 317 318 319 320
  }
};

}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
Y
Yang Yang 已提交
321
REGISTER_OPERATOR(lstmp, ops::LSTMPOp, ops::LSTMPOpMaker,
322 323
                  paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(lstmp_grad, ops::LSTMPGradOp);
324 325 326 327 328 329
REGISTER_OP_CPU_KERNEL(
    lstmp, ops::LSTMPKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPKernel<paddle::platform::CPUDeviceContext, double>);
REGISTER_OP_CPU_KERNEL(
    lstmp_grad, ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, float>,
    ops::LSTMPGradKernel<paddle::platform::CPUDeviceContext, double>);