lstm_cpu_kernel.h 18.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
D
dangqingqing 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once
16
#include <type_traits>
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/operators/activation_op.h"
Y
Yi Wang 已提交
19 20
#include "paddle/fluid/operators/math/detail/activation_functions.h"
#include "paddle/fluid/operators/math/lstm_compute.h"
D
dangqingqing 已提交
21

P
peizhilin 已提交
22 23 24 25 26 27
#if defined(_WIN32)
#if defined(__AVX2__) || defined(__AVX__)
inline __m256 operator+=(__m256 a, __m256 b) { return _mm256_add_ps(a, b); }
#endif
#endif

D
dangqingqing 已提交
28 29 30 31 32
namespace paddle {
namespace operators {
namespace math {
namespace detail {

33 34 35 36 37
using Array1 = Eigen::DSizes<int64_t, 1>;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

38
#if !defined(__NVCC__) && !defined(__HIPCC___)  // @{ Group LSTM CPU
D
dangqingqing 已提交
39 40

template <class T, class Op>
41
void naive_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
42 43
                                     int frame_size, T cell_clip,
                                     ActivationType active_node,
44
                                     ActivationType active_gate,
45 46
                                     ActivationType active_state,
                                     bool old_api_version) {
47 48 49 50 51 52 53 54 55 56 57 58
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_state;
  T r_prev_state = 0;
  T r_state_atv;
  T r_out;

59 60 61
  T *value_ig = value.gate_value;
  T *value_fg = value.gate_value + frame_size;
  T *value_in = value.gate_value + frame_size * 2;
62
  T *value_og = value.gate_value + frame_size * 3;
63 64 65 66 67
  if (old_api_version) {
    value_in = value.gate_value;
    value_ig = value.gate_value + frame_size;
    value_fg = value.gate_value + frame_size * 2;
  }
68 69 70 71 72 73 74 75 76 77 78 79

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;

    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
80 81
    }

82 83
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_prev_state,
       &r_state, &r_state_atv, &r_out, &r_checkI, &r_checkF, &r_checkO,
84
       &cell_clip, active_node, active_gate, active_state);
85 86 87 88 89 90 91 92

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
    value.state_value[i] = r_state;
    value.state_active_value[i] = r_state_atv;
    value.output_value[i] = r_out;
D
dangqingqing 已提交
93 94 95 96
  }
}

template <class T, class Op>
97
void naive_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
98
                                      LstmMetaGrad<T> grad, int frame_size,
99
                                      T cell_clip, ActivationType active_node,
100
                                      ActivationType active_gate,
101 102
                                      ActivationType active_state,
                                      bool old_api_version) {
103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
  T r_value_in;
  T r_value_ig;
  T r_value_fg;
  T r_value_og;
  T r_grad_in;
  T r_grad_ig;
  T r_grad_fg;
  T r_grad_og;
  T r_prev_state = 0;
  T r_prev_state_grad;
  T r_state;
  T r_state_grad;
  T r_state_atv;
  T r_output_grad;
  T r_checkI;
  T r_checkF;
  T r_checkO;
  T r_checkIGrad;
  T r_checkFGrad;
  T r_checkOGrad;

124 125 126
  T *value_ig = value.gate_value;
  T *value_fg = value.gate_value + frame_size;
  T *value_in = value.gate_value + frame_size * 2;
127
  T *value_og = value.gate_value + frame_size * 3;
128 129 130 131 132 133 134 135 136
  if (old_api_version) {
    value_in = value.gate_value;
    value_ig = value.gate_value + frame_size;
    value_fg = value.gate_value + frame_size * 2;
  }

  T *grad_ig = grad.gate_grad;
  T *grad_fg = grad.gate_grad + frame_size;
  T *grad_in = grad.gate_grad + frame_size * 2;
137
  T *grad_og = grad.gate_grad + frame_size * 3;
138 139 140 141 142
  if (old_api_version) {
    grad_in = grad.gate_grad;
    grad_ig = grad.gate_grad + frame_size;
    grad_fg = grad.gate_grad + frame_size * 2;
  }
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

  for (int i = 0; i < frame_size; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    r_checkI = value.check_ig ? value.check_ig[i] : 0;
    r_checkF = value.check_fg ? value.check_fg[i] : 0;
    r_checkO = value.check_og ? value.check_og[i] : 0;
    r_state = value.state_value[i];
    r_state_atv = value.state_active_value[i];
    r_output_grad = grad.output_grad[i];
    r_state_grad = grad.state_grad[i];
    if (value.prev_state_value) {
      r_prev_state = value.prev_state_value[i];
D
dangqingqing 已提交
158 159
    }

160 161 162 163
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_grad_in,
       &r_grad_ig, &r_grad_fg, &r_grad_og, &r_prev_state, &r_prev_state_grad,
       &r_state, &r_state_grad, &r_state_atv, &r_output_grad, &r_checkI,
       &r_checkF, &r_checkO, &r_checkIGrad, &r_checkFGrad, &r_checkOGrad,
164
       &cell_clip, active_node, active_gate, active_state);
165 166 167 168 169 170 171 172 173 174 175

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
    grad.state_grad[i] = r_state_grad;

    if (grad.prev_state_grad) grad.prev_state_grad[i] = r_prev_state_grad;
    if (value.prev_state_value) {
      if (grad.check_ig_grad) grad.check_ig_grad[i] += r_checkIGrad;
      if (grad.check_fg_grad) grad.check_fg_grad[i] += r_checkFGrad;
D
dangqingqing 已提交
176
    }
177
    if (grad.check_og_grad) grad.check_og_grad[i] += r_checkOGrad;
D
dangqingqing 已提交
178 179 180
  }
}

181
template <class T, class Op>
182
void avx_lstm_forward_one_sequence(Op op, LstmMetaValue<T> value,
183 184
                                   int frame_size, T cell_clip,
                                   ActivationType active_node,
185
                                   ActivationType active_gate,
186 187
                                   ActivationType active_state,
                                   bool old_api_version) {
D
dangqingqing 已提交
188
#ifdef __AVX__
189 190 191 192 193 194 195 196 197 198 199 200
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_state;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_state_atv;
  __m256 r_out;

201 202 203
  __m256 *value_ig = reinterpret_cast<__m256 *>(value.gate_value);
  __m256 *value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
  __m256 *value_in =
204 205 206
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  __m256 *value_og =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 3);
207 208 209 210 211
  if (old_api_version) {
    value_in = reinterpret_cast<__m256 *>(value.gate_value);
    value_ig = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
    value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  }
212 213 214 215 216 217 218

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
219 220 221
      r_checkI = (reinterpret_cast<__m256 *>(value.check_ig))[i];
      r_checkF = (reinterpret_cast<__m256 *>(value.check_fg))[i];
      r_checkO = (reinterpret_cast<__m256 *>(value.check_og))[i];
D
dangqingqing 已提交
222
    }
D
dangqingqing 已提交
223

224
    if (value.prev_state_value) {
225 226
      r_prev_state =
          (reinterpret_cast<__m256 const *>(value.prev_state_value))[i];
D
dangqingqing 已提交
227 228
    }

229 230
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_prev_state,
       &r_state, &r_state_atv, &r_out, &r_checkI, &r_checkF, &r_checkO,
231
       &cell_clip, active_node, active_gate, active_state);
232 233 234 235 236

    value_in[i] = r_value_in;
    value_ig[i] = r_value_ig;
    value_fg[i] = r_value_fg;
    value_og[i] = r_value_og;
237 238 239
    (reinterpret_cast<__m256 *>(value.state_value))[i] = r_state;
    (reinterpret_cast<__m256 *>(value.state_active_value))[i] = r_state_atv;
    (reinterpret_cast<__m256 *>(value.output_value))[i] = r_out;
D
dangqingqing 已提交
240 241 242 243
  }
#endif
}

244 245
template <class T, class Op>
void avx_lstm_backward_one_sequence(Op op, LstmMetaValue<T> value,
246
                                    LstmMetaGrad<T> grad, int frame_size,
247
                                    T cell_clip, ActivationType active_node,
248
                                    ActivationType active_gate,
249 250
                                    ActivationType active_state,
                                    bool old_api_version) {
D
dangqingqing 已提交
251
#ifdef __AVX__
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
  __m256 r_value_in;
  __m256 r_value_ig;
  __m256 r_value_fg;
  __m256 r_value_og;
  __m256 r_grad_in;
  __m256 r_grad_ig;
  __m256 r_grad_fg;
  __m256 r_grad_og;
  __m256 r_prev_state = _mm256_set1_ps(0.0f);
  __m256 r_prev_state_grad;
  __m256 r_state_grad;
  __m256 r_state;
  __m256 r_state_atv;
  __m256 r_output_grad;
  __m256 r_checkI = _mm256_set1_ps(0.0f);
  __m256 r_checkF = _mm256_set1_ps(0.0f);
  __m256 r_checkO = _mm256_set1_ps(0.0f);
  __m256 r_checkIGrad;
  __m256 r_checkFGrad;
  __m256 r_checkOGrad;

273 274 275
  __m256 *value_ig = reinterpret_cast<__m256 *>(value.gate_value);
  __m256 *value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
  __m256 *value_in =
276 277 278
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  __m256 *value_og =
      reinterpret_cast<__m256 *>(value.gate_value + frame_size * 3);
279 280 281 282 283 284 285 286 287
  if (old_api_version) {
    value_in = reinterpret_cast<__m256 *>(value.gate_value);
    value_ig = reinterpret_cast<__m256 *>(value.gate_value + frame_size);
    value_fg = reinterpret_cast<__m256 *>(value.gate_value + frame_size * 2);
  }

  __m256 *grad_ig = reinterpret_cast<__m256 *>(grad.gate_grad);
  __m256 *grad_fg = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size);
  __m256 *grad_in = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 2);
288
  __m256 *grad_og = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 3);
289 290 291 292 293
  if (old_api_version) {
    grad_in = reinterpret_cast<__m256 *>(grad.gate_grad);
    grad_ig = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size);
    grad_fg = reinterpret_cast<__m256 *>(grad.gate_grad + frame_size * 2);
  }
294 295 296 297 298 299 300

  for (int i = 0; i < frame_size / 8; i++) {
    r_value_in = value_in[i];
    r_value_ig = value_ig[i];
    r_value_fg = value_fg[i];
    r_value_og = value_og[i];
    if (value.check_ig) {
301 302 303
      r_checkI = (reinterpret_cast<__m256 *>(value.check_ig))[i];
      r_checkF = (reinterpret_cast<__m256 *>(value.check_fg))[i];
      r_checkO = (reinterpret_cast<__m256 *>(value.check_og))[i];
D
dangqingqing 已提交
304
    }
305 306 307 308
    r_state = (reinterpret_cast<__m256 *>(value.state_value))[i];
    r_state_atv = (reinterpret_cast<__m256 *>(value.state_active_value))[i];
    r_output_grad = (reinterpret_cast<__m256 *>(grad.output_grad))[i];
    r_state_grad = (reinterpret_cast<__m256 *>(grad.state_grad))[i];
309
    if (value.prev_state_value) {
310 311
      r_prev_state =
          (reinterpret_cast<__m256 const *>(value.prev_state_value))[i];
D
dangqingqing 已提交
312 313
    }

314 315 316 317
    op(&r_value_in, &r_value_ig, &r_value_fg, &r_value_og, &r_grad_in,
       &r_grad_ig, &r_grad_fg, &r_grad_og, &r_prev_state, &r_prev_state_grad,
       &r_state, &r_state_grad, &r_state_atv, &r_output_grad, &r_checkI,
       &r_checkF, &r_checkO, &r_checkIGrad, &r_checkFGrad, &r_checkOGrad,
318
       &cell_clip, active_node, active_gate, active_state);
319 320 321 322 323

    grad_in[i] = r_grad_in;
    grad_ig[i] = r_grad_ig;
    grad_fg[i] = r_grad_fg;
    grad_og[i] = r_grad_og;
324
    (reinterpret_cast<__m256 *>(grad.state_grad))[i] = r_state_grad;
325 326

    if (grad.prev_state_grad)
327
      (reinterpret_cast<__m256 *>(grad.prev_state_grad))[i] = r_prev_state_grad;
328
    if (value.prev_state_value) {
329 330 331 332
      if (grad.check_ig_grad)
        (reinterpret_cast<__m256 *>(grad.check_ig_grad))[i] += r_checkIGrad;
      if (grad.check_fg_grad)
        (reinterpret_cast<__m256 *>(grad.check_fg_grad))[i] += r_checkFGrad;
D
dangqingqing 已提交
333
    }
334 335
    if (grad.check_og_grad)
      (reinterpret_cast<__m256 *>(grad.check_og_grad))[i] += r_checkOGrad;
D
dangqingqing 已提交
336 337 338 339
  }
#endif
}

340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
template <class T>
void eigen_lstm_forward_one_sequence(const platform::CPUDeviceContext &context,
                                     LstmMetaValue<T> value, int frame_size) {
  auto eigen_value_ig =
      typename EigenVector<T>::Type(value.gate_value, Array1(frame_size));
  auto eigen_value_fg = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto eigen_value_in = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 2, Array1(frame_size));
  auto eigen_value_og = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 3, Array1(frame_size));
  auto eigen_state =
      typename EigenVector<T>::Type(value.state_value, Array1(frame_size));
  auto eigen_state_act = typename EigenVector<T>::Type(value.state_active_value,
                                                       Array1(frame_size));
  auto eigen_output =
      typename EigenVector<T>::Type(value.output_value, Array1(frame_size));

  auto &place = *context.eigen_device();
  TanhFunctor<T>()(place, eigen_value_in, eigen_value_in);
  SigmoidFunctor<T>()(place, eigen_value_ig, eigen_value_ig);
  SigmoidFunctor<T>()(place, eigen_value_fg, eigen_value_fg);
  SigmoidFunctor<T>()(place, eigen_value_og, eigen_value_og);

  eigen_state.device(place) = eigen_value_in * eigen_value_ig;
  if (value.prev_state_value) {
    auto eigen_prev_state = typename EigenVector<T>::ConstType(
        value.prev_state_value, Array1(frame_size));
    eigen_state.device(place) = eigen_state + eigen_prev_state * eigen_value_fg;
  }

  TanhFunctor<T>()(place, eigen_state, eigen_state_act);
  eigen_output.device(place) = eigen_value_og * eigen_state_act;
}

template <class T>
void eigen_lstm_backward_one_sequence(const platform::CPUDeviceContext &context,
                                      LstmMetaValue<T> value,
                                      LstmMetaGrad<T> grad, int frame_size) {
  auto eigen_value_ig =
      typename EigenVector<T>::Type(value.gate_value, Array1(frame_size));
  auto eigen_value_fg = typename EigenVector<T>::Type(
      value.gate_value + frame_size, Array1(frame_size));
  auto eigen_value_in = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 2, Array1(frame_size));
  auto eigen_value_og = typename EigenVector<T>::Type(
      value.gate_value + frame_size * 3, Array1(frame_size));
  auto eigen_state_act = typename EigenVector<T>::Type(value.state_active_value,
                                                       Array1(frame_size));

  auto eigen_grad_ig =
      typename EigenVector<T>::Type(grad.gate_grad, Array1(frame_size));
  auto eigen_grad_fg = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size, Array1(frame_size));
  auto eigen_grad_in = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size * 2, Array1(frame_size));
  auto eigen_grad_og = typename EigenVector<T>::Type(
      grad.gate_grad + frame_size * 3, Array1(frame_size));
  auto eigen_grad_output =
      typename EigenVector<T>::Type(grad.output_grad, Array1(frame_size));
  auto eigen_grad_state =
      typename EigenVector<T>::Type(grad.state_grad, Array1(frame_size));

  auto &place = *context.eigen_device();
  SigmoidGradFunctor<T>()(place, 1 /*useless*/, eigen_value_og,
                          eigen_grad_output * eigen_state_act, eigen_grad_og);
  eigen_grad_state.device(place) =
      eigen_grad_state +
      eigen_grad_output * eigen_value_og *
          (static_cast<T>(1) - eigen_state_act * eigen_state_act);
  TanhGradFunctor<T>()(place, 1, eigen_value_in,
                       eigen_grad_state * eigen_value_ig, eigen_grad_in);
  SigmoidGradFunctor<T>()(place, 1, eigen_value_ig,
                          eigen_grad_state * eigen_value_in, eigen_grad_ig);
  if (value.prev_state_value) {
    auto eigen_prev_state = typename EigenVector<T>::ConstType(
        value.prev_state_value, Array1(frame_size));
    SigmoidGradFunctor<T>()(place, 1, eigen_value_fg,
                            eigen_grad_state * eigen_prev_state, eigen_grad_fg);
  } else {
    SigmoidGradFunctor<T>()(place, 1, eigen_value_fg, 0, eigen_grad_fg);
  }
  if (grad.prev_state_grad) {
    auto eigen_grad_pre_state =
        typename EigenVector<T>::Type(grad.prev_state_grad, Array1(frame_size));
    eigen_grad_pre_state.device(place) = eigen_grad_state * eigen_value_fg;
  }
}

D
dangqingqing 已提交
429
template <class T, class Op>
430 431 432 433 434 435
void cpu_lstm_forward(const platform::CPUDeviceContext &context, Op op,
                      LstmMetaValue<T> value, int frame_size, T cell_clip,
                      ActivationType active_node, ActivationType active_gate,
                      ActivationType active_state, bool old_api_version) {
  if (!old_api_version) {
    eigen_lstm_forward_one_sequence<T>(context, value, frame_size);
D
dangqingqing 已提交
436
  } else {
437 438 439 440 441 442 443 444 445
    if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
      avx_lstm_forward_one_sequence<T>(op, value, frame_size, cell_clip,
                                       active_node, active_gate, active_state,
                                       old_api_version);
    } else {
      naive_lstm_forward_one_sequence<T>(op, value, frame_size, cell_clip,
                                         active_node, active_gate, active_state,
                                         old_api_version);
    }
D
dangqingqing 已提交
446 447 448 449
  }
}

template <class T, class Op>
450 451
void cpu_lstm_backward(const platform::CPUDeviceContext &context, Op op,
                       LstmMetaValue<T> value, LstmMetaGrad<T> grad,
452
                       int frame_size, T cell_clip, ActivationType active_node,
453 454 455 456
                       ActivationType active_gate, ActivationType active_state,
                       bool old_api_version) {
  if (!old_api_version) {
    eigen_lstm_backward_one_sequence<T>(context, value, grad, frame_size);
D
dangqingqing 已提交
457
  } else {
458 459 460 461 462 463 464 465 466
    if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same<T, float>::value)) {
      avx_lstm_backward_one_sequence<T>(op, value, grad, frame_size, cell_clip,
                                        active_node, active_gate, active_state,
                                        old_api_version);
    } else {
      naive_lstm_backward_one_sequence<T>(op, value, grad, frame_size,
                                          cell_clip, active_node, active_gate,
                                          active_state, old_api_version);
    }
D
dangqingqing 已提交
467 468 469
  }
}

470
#endif  // @{ End Group LSTM CPU
D
dangqingqing 已提交
471 472 473 474 475

}  // namespace detail
}  // namespace math
}  // namespace operators
}  // namespace paddle