__init__.py 3.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
# 
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# 
#     http://www.apache.org/licenses/LICENSE-2.0
# 
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.fluid import core

from .streams import Stream  # noqa: F401
from .streams import Event  # noqa: F401

__all__ = [
    'Stream',
    'Event',
    'current_stream',
    'synchronize',
L
Linjie Chen 已提交
25
    'device_count',
26
    'empty_cache',
27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
]


def current_stream(device=None):
    '''
    Return the current CUDA stream by the device.

    Parameters:
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device which want to get stream from. 
        If device is None, the device is the current device. Default: None.
    
    Returns:
        CUDAStream: the stream to the device.
    
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            s1 = paddle.device.cuda.current_stream()

            s2 = paddle.device.cuda.current_stream(0)

            s3 = paddle.device.cuda.current_stream(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._get_current_stream(device_id)


def synchronize(device=None):
    '''
    Wait for the compute on the given CUDA device to finish.

    Parameters:
        device(paddle.CUDAPlace()|int, optional): The device or the ID of the device.
        If device is None, the device is the current device. Default: None.
    
    Examples:
        .. code-block:: python

            # required: gpu
            import paddle

            paddle.device.cuda.synchronize()
            paddle.device.cuda.synchronize(0)
            paddle.device.cuda.synchronize(paddle.CUDAPlace(0))

    '''

    device_id = -1

    if device is not None:
        if isinstance(device, int):
            device_id = device
        elif isinstance(device, core.CUDAPlace):
            device_id = device.get_device_id()
        else:
            raise ValueError("device type must be int or paddle.CUDAPlace")

    return core._device_synchronize(device_id)
L
Linjie Chen 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120


def device_count():
    '''
    Return the number of GPUs available.
    
    Returns:
        int: the number of GPUs available.

    Examples:
        .. code-block:: python

            import paddle

            paddle.device.cuda.device_count()

    '''

    num_gpus = core.get_cuda_device_count() if hasattr(
        core, 'get_cuda_device_count') else 0

    return num_gpus
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143


def empty_cache():
    """
    Releases idle cached memory held by the allocator so that those can be used in other GPU
    application and visible in `nvidia-smi`. In most cases you don't need to use this function,
    Paddle does not release the memory back to the OS when you remove Tensors on the GPU,
    Because it keeps gpu memory in a pool so that next allocations can be done much faster.

    Examples:
        .. code-block:: python

            import paddle

            # required: gpu
            paddle.set_device("gpu")
            tensor = paddle.randn([512, 512, 512], "float")
            del tensor
            paddle.device.cuda.empty_cache()
    """

    if core.is_compiled_with_cuda():
        core.cuda_empty_cache()