# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.fluid import core from .streams import Stream # noqa: F401 from .streams import Event # noqa: F401 __all__ = [ 'Stream', 'Event', 'current_stream', 'synchronize', 'device_count', 'empty_cache', ] def current_stream(device=None): ''' Return the current CUDA stream by the device. Parameters: device(paddle.CUDAPlace()|int, optional): The device or the ID of the device which want to get stream from. If device is None, the device is the current device. Default: None. Returns: CUDAStream: the stream to the device. Examples: .. code-block:: python # required: gpu import paddle s1 = paddle.device.cuda.current_stream() s2 = paddle.device.cuda.current_stream(0) s3 = paddle.device.cuda.current_stream(paddle.CUDAPlace(0)) ''' device_id = -1 if device is not None: if isinstance(device, int): device_id = device elif isinstance(device, core.CUDAPlace): device_id = device.get_device_id() else: raise ValueError("device type must be int or paddle.CUDAPlace") return core._get_current_stream(device_id) def synchronize(device=None): ''' Wait for the compute on the given CUDA device to finish. Parameters: device(paddle.CUDAPlace()|int, optional): The device or the ID of the device. If device is None, the device is the current device. Default: None. Examples: .. code-block:: python # required: gpu import paddle paddle.device.cuda.synchronize() paddle.device.cuda.synchronize(0) paddle.device.cuda.synchronize(paddle.CUDAPlace(0)) ''' device_id = -1 if device is not None: if isinstance(device, int): device_id = device elif isinstance(device, core.CUDAPlace): device_id = device.get_device_id() else: raise ValueError("device type must be int or paddle.CUDAPlace") return core._device_synchronize(device_id) def device_count(): ''' Return the number of GPUs available. Returns: int: the number of GPUs available. Examples: .. code-block:: python import paddle paddle.device.cuda.device_count() ''' num_gpus = core.get_cuda_device_count() if hasattr( core, 'get_cuda_device_count') else 0 return num_gpus def empty_cache(): """ Releases idle cached memory held by the allocator so that those can be used in other GPU application and visible in `nvidia-smi`. In most cases you don't need to use this function, Paddle does not release the memory back to the OS when you remove Tensors on the GPU, Because it keeps gpu memory in a pool so that next allocations can be done much faster. Examples: .. code-block:: python import paddle # required: gpu paddle.set_device("gpu") tensor = paddle.randn([512, 512, 512], "float") del tensor paddle.device.cuda.empty_cache() """ if core.is_compiled_with_cuda(): core.cuda_empty_cache()