sequence_pool_op.cc 7.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2 3 4 5 6 7 8 9 10 11 12 13 14

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

W
Wu Yi 已提交
15
#include "paddle/fluid/operators/sequence_ops/sequence_pool_op.h"
16
#include <memory>
17
#include <string>
18 19 20 21

namespace paddle {
namespace operators {

22
class SequencePoolOp : public framework::OperatorWithKernel {
23 24 25
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

26
  void InferShape(framework::InferShapeContext* ctx) const override {
27 28 29 30
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "Input(X) of SequencePoolOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of SequencePoolOp should not be null.");
31 32 33 34 35 36 37 38 39 40

    if (!ctx->IsRuntime()) {
      // Check the lod_level for compile-time.
      framework::VarDesc* x_desc =
          boost::get<framework::VarDesc*>(ctx->GetInputVarPtrs("X")[0]);
      PADDLE_ENFORCE_GT(
          x_desc->GetLoDLevel(), 0,
          "The LoD level Input(X) of sequence_pool should be larger than 0");
    }

Q
Qiao Longfei 已提交
41
    ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
42
    if (ctx->Attrs().Get<std::string>("pooltype") == "MAX") {
43 44 45
      PADDLE_ENFORCE_EQ(
          ctx->HasOutput("MaxIndex"), true,
          "Output(MaxIndex) of SequencePoolOp should not be null.");
46 47
      ctx->SetOutputDim("MaxIndex", ctx->GetInputDim("X"));
    }
48 49 50
  }
};

51
class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker {
52
 public:
Y
Yu Yang 已提交
53
  void Make() override {
54
    AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp");
L
Luo Tao 已提交
55
    AddOutput("Out",
56
              "(Tensor) The output of SequencePoolOp does not contain LoD "
L
Luo Tao 已提交
57
              "infomation.");
58
    AddOutput("MaxIndex",
D
dangqingqing 已提交
59 60
              "(Tensor<int>) This tensor is used for the sequence max-pooling "
              "to record the max indexes.")
61
        .AsIntermediate();
62 63 64 65
    AddAttr<bool>("is_test",
                  "(bool, default false) Set to true for inference only, false "
                  "for training. Some layers may run faster when this is true.")
        .SetDefault(false);
D
dzhwinter 已提交
66 67
    AddAttr<std::string>(
        "pooltype",
L
Luo Tao 已提交
68
        "(string, default 'AVERAGE') the pooling pooltype of SequencePoolOp.")
69 70
        .SetDefault("AVERAGE")
        .InEnum({"AVERAGE", "SUM", "SQRT", "LAST", "FIRST", "MAX"});
71 72 73
    AddAttr<float>("pad_value",
                   "(float, default 0.0) The value to pad for empty sequence.")
        .SetDefault(0.0);
74
    AddComment(R"DOC(
75
Sequence Pool Operator.
76

77 78
The SequencePoolOp pools features of all time-steps of each instance.
It supports six pooling types:
79 80 81
1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$
2. SUM:     $$Out[i] = \sum_jX_{ij}$$
3. SQRT:    $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$
82 83
4. LAST:    Out[i] = last instance in i-th sequence X[i]
5. FIRST:   Out[i] = first instance in i-th sequence X[i]
84
6. MAX:     $$Out[i] = max(X_i)$$
85

86 87
and for the empty sequence Out[i] = attr(pad_value).

88 89 90
The following example explains how this works:
For a mini-batch of 3 variable-length sentences,
containing 2, 3, and 2 time-steps:
Q
Qiao Longfei 已提交
91

92 93 94
Assume X is a [7,M,N] LoDTensor, and X->lod()[0] = [0, 2, 5, 7], 7=2+3+2.
Besides, for the sake of simplicity, we assume M=1 and N=1,
and the value of X = [[1, 3], [2, 4, 6], [5, 1]].
L
Luo Tao 已提交
95

96 97
Thus, Out is a [3,1,1] Tensor without LoD infomation.
And for different pooltype, the value of Out is as follows:
L
Luo Tao 已提交
98

99 100 101
- AVERAGE: [2, 4, 3], where 2=(1+3)/2, 4=(2+4+6)/3, 3=(5+1)/2
- SUM: [4, 12, 6], where 4=1+3, 12=2+4+6, 6=5+1
- SQRT: [2.82, 6.93, 4.24], where 2.82=(1+3)/sqrt(2),
L
Luo Tao 已提交
102
           6.93=(2+4+6)/sqrt(3), 4.24=(5+1)/sqrt(2)
103 104 105 106
- MAX: [3, 6, 5], where 3=max(1,3), 6=max(2,4,6), 5=max(5,1)
- LAST: [3, 6, 1], where 3=last(1,3), 6=last(2,4,6), 1=last(5,1)
- FIRST: [1, 2, 5], where 1=first(1,3), 2=first(2,4,6), 5=first(5,1)

107 108 109 110
    )DOC");
  }
};

111
class SequencePoolGradOp : public framework::OperatorWithKernel {
112 113 114
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

115
  void InferShape(framework::InferShapeContext* ctx) const override {
116 117 118 119
    PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
                      "Gradient of Out should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
                      "The input X should not be null.");
Q
Qiao Longfei 已提交
120 121
    auto og_dims = ctx->GetInputDim(framework::GradVarName("Out"));
    auto x_dims = ctx->GetInputDim("X");
122 123
    PADDLE_ENFORCE_EQ(og_dims.size(), x_dims.size(),
                      "The rank of output grad must equal to Input(X).");
124
    for (int64_t i = 1; i < og_dims.size(); ++i) {
125 126
      PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch.");
    }
127 128 129

    ctx->ShareDim("X", /*->*/ framework::GradVarName("X"));
    ctx->ShareLoD("X", /*->*/ framework::GradVarName("X"));
130
  }
131 132

 protected:
133
  framework::OpKernelType GetExpectedKernelType(
134
      const framework::ExecutionContext& ctx) const override {
135 136 137
    return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
                                       ctx, framework::GradVarName("Out")),
                                   ctx.device_context());
138
  }
139 140
};

H
hong 已提交
141 142
template <typename T>
class SequencePoolGradOpMaker : public framework::SingleGradOpMaker<T> {
143
 public:
H
hong 已提交
144
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
145 146

 protected:
H
hong 已提交
147 148
  std::unique_ptr<T> Apply() const override {
    auto* op_desc_ptr = new T();
149
    op_desc_ptr->SetType("sequence_pool_grad");
H
hong 已提交
150 151 152
    op_desc_ptr->SetInput("X", this->Input("X"));
    if (boost::get<std::string>(this->GetAttr("pooltype")) == "MAX") {
      op_desc_ptr->SetInput("MaxIndex", this->Output("MaxIndex"));
153
    }
H
hong 已提交
154 155 156 157 158
    op_desc_ptr->SetInput(framework::GradVarName("Out"),
                          this->OutputGrad("Out"));
    op_desc_ptr->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
    op_desc_ptr->SetAttrMap(this->Attrs());
    return std::unique_ptr<T>(op_desc_ptr);
159 160 161
  }
};

162 163 164
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(
    SequencePoolGradOpNoNeedBufferVarsInference, "X");

165 166 167 168
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
169
REGISTER_OPERATOR(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker,
H
hong 已提交
170 171
                  ops::SequencePoolGradOpMaker<paddle::framework::OpDesc>,
                  ops::SequencePoolGradOpMaker<paddle::imperative::OpBase>);
172 173
REGISTER_OPERATOR(sequence_pool_grad, ops::SequencePoolGradOp,
                  ops::SequencePoolGradOpNoNeedBufferVarsInference);
174
REGISTER_OP_CPU_KERNEL(
Q
QI JUN 已提交
175 176
    sequence_pool,
    ops::SequencePoolKernel<paddle::platform::CPUDeviceContext, float>);
177
REGISTER_OP_CPU_KERNEL(
178
    sequence_pool_grad,
Q
QI JUN 已提交
179
    ops::SequencePoolGradKernel<paddle::platform::CPUDeviceContext, float>);