fusion_conv_inception_op.cu 12.8 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"

DECLARE_uint64(conv_workspace_size_limit);

namespace paddle {
namespace operators {

24
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;

using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto filters = ctx.MultiInput<framework::Tensor>("Filter");
    auto bias = ctx.MultiInput<framework::Tensor>("Bias");

    auto* output = ctx.Output<Tensor>("Output");
    auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");

    const std::string pool_type = ctx.Attr<std::string>("pooling_type");
    const std::string activation = ctx.Attr<std::string>("activation");
    const bool exclusive = ctx.Attr<bool>("exclusive");

    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());

    DataLayout layout = DataLayout::kNCHW;
64
    std::vector<int> in_dim = framework::vectorize<int>(input->dims());
Q
qingqing01 已提交
65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85

    // ------------------- cudnn descriptors ---------------------
    PoolingMode pooling_mode;
    if (pool_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : (PoolingMode::kAverageInclusive);
    }
    std::vector<int> k0x0 = {0, 0};
    std::vector<int> k1x1 = {1, 1};
    std::vector<int> k1x1_2 = {1, 1};
    std::vector<int> k3x3 = {3, 3};
    ScopedPoolingDescriptor pool_desc;
    ScopedActivationDescriptor act_desc;
    ScopedTensorDescriptor out_pool_desc;
    ScopedTensorDescriptor input_desc;
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
86
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
87
    cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
88
        layout, framework::vectorize<int>(input->dims()));
Q
qingqing01 已提交
89 90 91 92 93 94 95 96 97

    cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
    cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
    cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
    cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
    cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
    cudnnConvolutionDescriptor_t* conv_desc =
        new cudnnConvolutionDescriptor_t[4];
    for (int i = 0; i < 4; ++i) {
98
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
99
          platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
100
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
101
          platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
102
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
103
          platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
104
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
105
          platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
106
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
          platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
    }

    std::vector<std::vector<int>> filter_dims;
    std::vector<std::vector<int>> bias_dims;
    std::vector<std::vector<int>> in_dims;
    std::vector<std::vector<int>> out_dims;
    std::vector<std::vector<int>> in_strides;
    std::vector<std::vector<int>> out_strides;
    std::vector<std::vector<int>> bias_strides;

    cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
    int n = in_dim[0];
    int h = in_dim[2];
    int w = in_dim[3];
    int oc = output->dims()[1];

    cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
                                       ? CUDNN_DATA_DOUBLE
                                       : CUDNN_DATA_FLOAT;

    for (int i = 0; i < 4; ++i) {
129
      filter_dims.push_back(framework::vectorize<int>(filters[i]->dims()));
130
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
Q
qingqing01 已提交
131 132 133
          filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
      bias_dims.push_back({1, filter_dims[i][0], 1, 1});
      bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
134
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
135 136 137 138 139 140 141 142
          bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
          bias_strides[i].data()));
      in_dims.push_back({n, filter_dims[i][1], h, w});
      out_dims.push_back({n, filter_dims[i][0], h, w});
      in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
      out_strides.push_back({oc * h * w, h * w, w, 1});

      if (i < 2) {
143 144 145 146
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
147
      } else {
148 149 150 151
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionNdDescriptor(
                conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
                CUDNN_CROSS_CORRELATION, compute_type));
Q
qingqing01 已提交
152
      }
153 154 155
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnSetConvolutionMathType(conv_desc[i],
                                                         CUDNN_DEFAULT_MATH));
A
AshburnLee 已提交
156
#if CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
A
AshburnLee 已提交
157 158 159 160 161
      if (!platform::allow_tf32_cudnn) {
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnSetConvolutionMathType(conv_desc[i],
                                                           CUDNN_FMA_MATH));
      }
A
AshburnLee 已提交
162
#endif  // CUDA_VERSION >= 11000 && CUDNN_VERSION >= 8000
Q
qingqing01 已提交
163 164 165 166 167
    }
    in_dims[2][1] *= 2;
    in_strides[2][0] = oc * h * w;
    out_strides[2][0] = filter_dims[2][0] * h * w;  // this out is continuous.
    in_strides[3][0] = filter_dims[2][0] * h * w;
168
    PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
169 170 171 172 173 174
        platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));

    cudnnConvolutionFwdAlgo_t algo[4];
    auto handle = dev_ctx.cudnn_handle();
    size_t workspace_size_in_bytes = 0;  // final workspace to allocate.

175
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
176 177
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
178
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
179 180 181 182 183
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    for (int i = 0; i < 4; ++i) {
184
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
185
          in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
186
      PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
187 188
          out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
          out_strides[i].data()));
189 190 191 192 193 194

      int perf_count;
      int best_algo_idx = 0;
      size_t tmp_size = 0;
      std::unique_ptr<cudnnConvolutionFwdAlgoPerf_t[]> perf_results(
          new cudnnConvolutionFwdAlgoPerf_t[kNUM_CUDNN_FWD_ALGS]);
195
      PADDLE_ENFORCE_CUDA_SUCCESS(
196
          platform::dynload::cudnnGetConvolutionForwardAlgorithm_v7(
197
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
198 199 200
              kNUM_CUDNN_FWD_ALGS, &perf_count, perf_results.get()));
      algo[i] = (perf_results.get())[best_algo_idx].algo;

201 202 203 204
      PADDLE_ENFORCE_CUDA_SUCCESS(
          platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
              handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
              algo[i], &tmp_size));
205

Q
qingqing01 已提交
206 207 208 209 210 211 212 213 214 215 216 217
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    int oc0 = filter_dims[0][0];
    int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
    int oc3 = filter_dims[3][0];
    int oc2 = oc - oc0 - oc1 - oc3;

    // branch1: pool + 1x1 conv
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
218
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnPoolingForward(
Q
qingqing01 已提交
219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        pool_out_desc, temp_data));

    std::vector<const void*> in_datas;
    in_datas.push_back(static_cast<const void*>(temp_data));
    in_datas.push_back(static_cast<const void*>(input_data));
    in_datas.push_back(
        static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
    T* temp2_data = temp_outs[1]->mutable_data<T>(
        framework::make_ddim(out_dims[2]), ctx.GetPlace());
    in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));

    std::vector<void*> out_datas;
    out_datas.push_back(static_cast<void*>(output_data));
    out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
    out_datas.push_back(static_cast<void*>(temp2_data));
    out_datas.push_back(
        static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));

    for (int i = 0; i < 4; ++i) {
C
chengduo 已提交
239
      auto func = [&](void* cudnn_workspace) {
240 241 242 243 244 245 246 247
        PADDLE_ENFORCE_CUDA_SUCCESS(
            platform::dynload::cudnnConvolutionBiasActivationForward(
                handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
                static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
                algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
                out_desc[i], out_datas[i], bias_desc[i],
                static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
                out_desc[i], out_datas[i]));
C
chengduo 已提交
248 249 250
      };
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
      workspace_handle.RunFunc(func, workspace_size_in_bytes);
Q
qingqing01 已提交
251 252 253 254
    }

    cudnnTensorDescriptor_t x_desc;
    cudnnTensorDescriptor_t y_desc;
255 256 257 258 259
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
260
        x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
261
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
Q
qingqing01 已提交
262
        y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
263
    PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnTransformTensor(
Q
qingqing01 已提交
264 265 266 267 268
        handle, CudnnDataType<T>::kOne(), x_desc,
        static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
        y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));

    for (int i = 0; i < 4; ++i) {
269
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
270
          platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
271
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
272
          platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
273
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
274
          platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
275
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
276
          platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
277
      PADDLE_ENFORCE_CUDA_SUCCESS(
Q
qingqing01 已提交
278 279
          platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
    }
280 281 282 283
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
    PADDLE_ENFORCE_CUDA_SUCCESS(
        platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
Q
qingqing01 已提交
284 285 286 287 288 289 290
  }
};
#endif

}  // namespace operators
}  // namespace paddle

291
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
292 293 294 295 296
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
                        ops::CUDNNConvInceptionFusionOpKernel<float>,
                        ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif