fusion_conv_inception_op.cu 11.7 KB
Newer Older
Q
qingqing01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/conv_cudnn_op_cache.h"
#include "paddle/fluid/platform/cudnn_helper.h"

DECLARE_uint64(conv_workspace_size_limit);

namespace paddle {
namespace operators {

24
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
using Tensor = framework::Tensor;
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
using ScopedFilterDescriptor = platform::ScopedFilterDescriptor;
using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor;
using ScopedActivationDescriptor = platform::ScopedActivationDescriptor;
using DataLayout = platform::DataLayout;

using ScopedPoolingDescriptor = platform::ScopedPoolingDescriptor;
using PoolingMode = platform::PoolingMode;
template <typename T>
using ScalingParamType = typename platform::CudnnDataType<T>::ScalingParamType;

template <typename T>
using CudnnDataType = platform::CudnnDataType<T>;

template <typename T>
class CUDNNConvInceptionFusionOpKernel : public framework::OpKernel<T> {
 public:
  void Compute(const framework::ExecutionContext& ctx) const override {
    auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
    auto* input = ctx.Input<Tensor>("Input");
    auto filters = ctx.MultiInput<framework::Tensor>("Filter");
    auto bias = ctx.MultiInput<framework::Tensor>("Bias");

    auto* output = ctx.Output<Tensor>("Output");
    auto temp_outs = ctx.MultiOutput<framework::Tensor>("TempOutput");

    const std::string pool_type = ctx.Attr<std::string>("pooling_type");
    const std::string activation = ctx.Attr<std::string>("activation");
    const bool exclusive = ctx.Attr<bool>("exclusive");

    int64_t user_workspace_size =
        static_cast<size_t>(ctx.Attr<int>("workspace_size_MB"));

    const T* input_data = input->data<T>();
    T* output_data = output->mutable_data<T>(ctx.GetPlace());
    T* temp_data = temp_outs[0]->mutable_data<T>(input->dims(), ctx.GetPlace());

    DataLayout layout = DataLayout::kNCHW;
    std::vector<int> in_dim = framework::vectorize2int(input->dims());

    // ------------------- cudnn descriptors ---------------------
    PoolingMode pooling_mode;
    if (pool_type == "max") {
      pooling_mode = PoolingMode::kMaximum;
    } else {
      pooling_mode = exclusive ? PoolingMode::kAverageExclusive
                               : (PoolingMode::kAverageInclusive);
    }
    std::vector<int> k0x0 = {0, 0};
    std::vector<int> k1x1 = {1, 1};
    std::vector<int> k1x1_2 = {1, 1};
    std::vector<int> k3x3 = {3, 3};
    ScopedPoolingDescriptor pool_desc;
    ScopedActivationDescriptor act_desc;
    ScopedTensorDescriptor out_pool_desc;
    ScopedTensorDescriptor input_desc;
    cudnnPoolingDescriptor_t cudnn_pool_desc =
        pool_desc.descriptor(pooling_mode, k3x3, k1x1, k1x1);

    cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));
    cudnnTensorDescriptor_t pool_out_desc = out_pool_desc.descriptor<T>(
        layout, framework::vectorize2int(input->dims()));

    cudnnDataType_t cudnn_dtype = CudnnDataType<T>::type;
    cudnnTensorDescriptor_t* out_desc = new cudnnTensorDescriptor_t[4];
    cudnnFilterDescriptor_t* filter_desc = new cudnnFilterDescriptor_t[4];
    cudnnTensorDescriptor_t* bias_desc = new cudnnTensorDescriptor_t[4];
    cudnnTensorDescriptor_t* in_desc = new cudnnTensorDescriptor_t[4];
    cudnnConvolutionDescriptor_t* conv_desc =
        new cudnnConvolutionDescriptor_t[4];
    for (int i = 0; i < 4; ++i) {
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateFilterDescriptor(&filter_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&bias_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&in_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateTensorDescriptor(&out_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnCreateConvolutionDescriptor(&conv_desc[i]));
    }

    std::vector<std::vector<int>> filter_dims;
    std::vector<std::vector<int>> bias_dims;
    std::vector<std::vector<int>> in_dims;
    std::vector<std::vector<int>> out_dims;
    std::vector<std::vector<int>> in_strides;
    std::vector<std::vector<int>> out_strides;
    std::vector<std::vector<int>> bias_strides;

    cudnnTensorFormat_t format = CUDNN_TENSOR_NCHW;
    int n = in_dim[0];
    int h = in_dim[2];
    int w = in_dim[3];
    int oc = output->dims()[1];

    cudnnDataType_t compute_type = (cudnn_dtype == CUDNN_DATA_DOUBLE)
                                       ? CUDNN_DATA_DOUBLE
                                       : CUDNN_DATA_FLOAT;

    for (int i = 0; i < 4; ++i) {
      filter_dims.push_back(framework::vectorize2int(filters[i]->dims()));
      CUDNN_ENFORCE(platform::dynload::cudnnSetFilterNdDescriptor(
          filter_desc[i], cudnn_dtype, format, 4, filter_dims[i].data()));
      bias_dims.push_back({1, filter_dims[i][0], 1, 1});
      bias_strides.push_back({filter_dims[i][0], 1, 1, 1});
      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          bias_desc[i], cudnn_dtype, 4, bias_dims[i].data(),
          bias_strides[i].data()));
      in_dims.push_back({n, filter_dims[i][1], h, w});
      out_dims.push_back({n, filter_dims[i][0], h, w});
      in_strides.push_back({filter_dims[i][1] * h * w, h * w, w, 1});
      out_strides.push_back({oc * h * w, h * w, w, 1});

      if (i < 2) {
        CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionNdDescriptor(
            conv_desc[i], 2, k0x0.data(), k1x1.data(), k1x1.data(),
            CUDNN_CROSS_CORRELATION, compute_type));
      } else {
        CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionNdDescriptor(
            conv_desc[i], 2, k1x1.data(), k1x1.data(), k1x1.data(),
            CUDNN_CROSS_CORRELATION, compute_type));
      }
      CUDNN_ENFORCE(platform::dynload::cudnnSetConvolutionMathType(
          conv_desc[i], CUDNN_DEFAULT_MATH));
    }
    in_dims[2][1] *= 2;
    in_strides[2][0] = oc * h * w;
    out_strides[2][0] = filter_dims[2][0] * h * w;  // this out is continuous.
    in_strides[3][0] = filter_dims[2][0] * h * w;
    CUDNN_ENFORCE(
        platform::dynload::cudnnSetConvolutionGroupCount(conv_desc[2], 2));

    cudnnConvolutionFwdAlgo_t algo[4];
    auto handle = dev_ctx.cudnn_handle();
    size_t workspace_size_in_bytes = 0;  // final workspace to allocate.

165
    size_t workspace_size_limit = 0;
Q
qingqing01 已提交
166 167
    if (FLAGS_conv_workspace_size_limit > 0 || user_workspace_size > 0) {
      int64_t max_user_size =
168
          std::min(static_cast<int64_t>(FLAGS_conv_workspace_size_limit),
Q
qingqing01 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219
                   user_workspace_size);
      workspace_size_limit = max_user_size * 1024 * 1024;
    }

    for (int i = 0; i < 4; ++i) {
      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          in_desc[i], cudnn_dtype, 4, in_dims[i].data(), in_strides[i].data()));
      CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
          out_desc[i], cudnn_dtype, 4, out_dims[i].data(),
          out_strides[i].data()));
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm(
          handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
          CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT, workspace_size_limit,
          &algo[i]));
      size_t tmp_size = 0;
      CUDNN_ENFORCE(platform::dynload::cudnnGetConvolutionForwardWorkspaceSize(
          handle, in_desc[i], filter_desc[i], conv_desc[i], out_desc[i],
          algo[i], &tmp_size));
      workspace_size_in_bytes = std::max(workspace_size_in_bytes, tmp_size);
    }
    cudnnActivationDescriptor_t cudnn_act_desc =
        act_desc.descriptor<T>(activation);

    int oc0 = filter_dims[0][0];
    int oc1 = filter_dims[1][0] - filter_dims[2][1] * 2;
    int oc3 = filter_dims[3][0];
    int oc2 = oc - oc0 - oc1 - oc3;

    // branch1: pool + 1x1 conv
    ScalingParamType<T> alpha = 1.0f, beta = 0.0f;
    CUDNN_ENFORCE(platform::dynload::cudnnPoolingForward(
        handle, cudnn_pool_desc, &alpha, cudnn_input_desc, input_data, &beta,
        pool_out_desc, temp_data));

    std::vector<const void*> in_datas;
    in_datas.push_back(static_cast<const void*>(temp_data));
    in_datas.push_back(static_cast<const void*>(input_data));
    in_datas.push_back(
        static_cast<const void*>(output_data + (oc0 + oc1) * h * w));
    T* temp2_data = temp_outs[1]->mutable_data<T>(
        framework::make_ddim(out_dims[2]), ctx.GetPlace());
    in_datas.push_back(static_cast<const void*>(temp2_data + oc2 * h * w));

    std::vector<void*> out_datas;
    out_datas.push_back(static_cast<void*>(output_data));
    out_datas.push_back(static_cast<void*>(output_data + oc0 * h * w));
    out_datas.push_back(static_cast<void*>(temp2_data));
    out_datas.push_back(
        static_cast<void*>(output_data + (oc0 + oc1 + oc2) * h * w));

    for (int i = 0; i < 4; ++i) {
C
chengduo 已提交
220 221 222 223 224 225 226 227 228 229 230
      auto func = [&](void* cudnn_workspace) {
        CUDNN_ENFORCE(platform::dynload::cudnnConvolutionBiasActivationForward(
            handle, &alpha, in_desc[i], in_datas[i], filter_desc[i],
            static_cast<const void*>(filters[i]->data<T>()), conv_desc[i],
            algo[i], cudnn_workspace, workspace_size_in_bytes, &beta,
            out_desc[i], out_datas[i], bias_desc[i],
            static_cast<const void*>(bias[i]->data<T>()), cudnn_act_desc,
            out_desc[i], out_datas[i]));
      };
      auto workspace_handle = dev_ctx.cudnn_workspace_handle();
      workspace_handle.RunFunc(func, workspace_size_in_bytes);
Q
qingqing01 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    }

    cudnnTensorDescriptor_t x_desc;
    cudnnTensorDescriptor_t y_desc;
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&x_desc));
    CUDNN_ENFORCE(platform::dynload::cudnnCreateTensorDescriptor(&y_desc));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        x_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[2].data()));
    CUDNN_ENFORCE(platform::dynload::cudnnSetTensorNdDescriptor(
        y_desc, cudnn_dtype, 4, out_dims[3].data(), out_strides[3].data()));
    CUDNN_ENFORCE(platform::dynload::cudnnTransformTensor(
        handle, CudnnDataType<T>::kOne(), x_desc,
        static_cast<const void*>(out_datas[2]), CudnnDataType<T>::kZero(),
        y_desc, static_cast<void*>(output_data + (oc0 + oc1) * h * w)));

    for (int i = 0; i < 4; ++i) {
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(in_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(out_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyFilterDescriptor(filter_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyTensorDescriptor(bias_desc[i]));
      CUDNN_ENFORCE(
          platform::dynload::cudnnDestroyConvolutionDescriptor(conv_desc[i]));
    }
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(x_desc));
    CUDNN_ENFORCE(platform::dynload::cudnnDestroyTensorDescriptor(y_desc));
  }
};
#endif

}  // namespace operators
}  // namespace paddle

267
#if CUDNN_VERSION >= 7100
Q
qingqing01 已提交
268 269 270 271 272
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(conv2d_inception_fusion,
                        ops::CUDNNConvInceptionFusionOpKernel<float>,
                        ops::CUDNNConvInceptionFusionOpKernel<double>);
#endif