distribute_transpiler.py 51.4 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

T
typhoonzero 已提交
15
from __future__ import print_function
16

T
tangwei12 已提交
17
import os
T
typhoonzero 已提交
18
import math
19 20

import distributed_splitter as splitter
21
from .. import core
T
typhoonzero 已提交
22 23 24
from ..framework import Program, default_main_program, \
                        default_startup_program, \
                        Variable, Parameter, grad_var_name
25 26 27 28

LOOKUP_TABLE_TYPE = "lookup_table"
LOOKUP_TABLE_GRAD_TYPE = "lookup_table_grad"
RPC_CLIENT_VAR_NAME = "RPC_CLIENT_VAR"
T
done  
typhoonzero 已提交
29

T
tangwei12 已提交
30 31 32 33
# for checkpoint
SUCCESS = "_SUCCESS"
SERIAL_VAR_NAME = "SERIAL_NUMBER"

T
done  
typhoonzero 已提交
34

T
typhoonzero 已提交
35 36 37 38 39 40
class VarBlock:
    def __init__(self, varname, offset, size):
        self.varname = varname
        # NOTE: real offset is offset * size
        self.offset = offset
        self.size = size
T
done  
typhoonzero 已提交
41

T
typhoonzero 已提交
42 43
    def __str__(self):
        return "%s:%d:%d" % (self.varname, self.offset, self.size)
T
done  
typhoonzero 已提交
44 45


46
class UnionFind(object):
47
    """ Union-find data structure.
48

49
    Union-find is a data structure that keeps track of a set of elements partitioned
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    into a number of disjoint (non-overlapping) subsets.

    Reference:
    https://en.wikipedia.org/wiki/Disjoint-set_data_structure

    Args:
      elements(list): The initialize element list.
    """

    def __init__(self, elementes=None):
        self._parents = []  # index -> parent index
        self._index = {}  # element -> index
        self._curr_idx = 0
        if not elementes:
            elementes = []
        for ele in elementes:
            self._parents.append(self._curr_idx)
            self._index.update({ele: self._curr_idx})
            self._curr_idx += 1

    def find(self, x):
        # Find the root index of given element x,
        # execute the path compress while findind the root index
        if not x in self._index:
            return -1
        idx = self._index[x]
        while idx != self._parents[idx]:
            t = self._parents[idx]
            self._parents[idx] = self._parents[t]
            idx = t
        return idx

    def union(self, x, y):
        # Union two given element
        x_root = self.find(x)
        y_root = self.find(y)

        if x_root == y_root:
            return
        self._parents[x_root] = y_root

    def is_connected(self, x, y):
        # If two given elements have the same root index,
        # then they are connected.
        return self.find(x) == self.find(y)


97 98 99 100
def same_or_split_var(p_name, var_name):
    return p_name == var_name or p_name.startswith(var_name + ".block")


T
typhoonzero 已提交
101 102 103 104 105
def split_dense_variable(var_list,
                         pserver_count,
                         min_block_size=1024,
                         max_block_size=1048576):
    """
106
        We may need to split dense tensor to one or more blocks and put
T
typhoonzero 已提交
107 108
        them equally onto parameter server. One block is a sub-tensor
        aligned by dim[0] of the tensor.
109

T
typhoonzero 已提交
110 111
        We need to have a minimal block size so that the calculations in
        the parameter server side can gain better performance. By default
112 113
        minimum block size is 1024. The max block size is used to prevent
        very large blocks that may cause send error.
114 115
        :return: A list of VarBlocks. Each VarBlock specifies a shard of
           the var.
T
typhoonzero 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
    """
    blocks = []
    for var in var_list:
        split_count = pserver_count
        var_numel = reduce(lambda x, y: x * y, var.shape)
        max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
        if max_pserver_count == 0:
            max_pserver_count = 1
        if max_pserver_count < pserver_count:
            split_count = max_pserver_count
        block_size = int(math.ceil(var_numel / float(split_count)))

        if len(var.shape) >= 2:
            # align by dim1(width)
            dim1 = reduce(lambda x, y: x * y, var.shape[1:])
            remains = block_size % dim1
            if remains != 0:
                block_size += dim1 - remains
134
        # update split_count after aligning
T
typhoonzero 已提交
135 136 137 138 139 140 141 142 143
        split_count = int(math.ceil(var_numel / float(block_size)))
        for block_id in xrange(split_count):
            curr_block_size = min(block_size, var_numel - (
                (block_id) * block_size))
            block = VarBlock(var.name, block_id, curr_block_size)
            blocks.append(str(block))
    return blocks


144 145 146 147 148 149 150 151 152 153
def delete_ops(block, ops):
    try:
        start = list(block.ops).index(ops[0])
        end = list(block.ops).index(ops[-1])
        [block.remove_op(start) for _ in xrange(end - start + 1)]
    except Exception, e:
        raise e
    block.program.sync_with_cpp()


T
done  
typhoonzero 已提交
154 155
class DistributeTranspiler:
    def transpile(self,
T
typhoonzero 已提交
156
                  trainer_id,
T
done  
typhoonzero 已提交
157 158 159
                  program=None,
                  pservers="127.0.0.1:6174",
                  trainers=1,
Q
tmp  
qiaolongfei 已提交
160
                  split_method=splitter.round_robin,
T
tangwei12 已提交
161 162
                  sync_mode=True,
                  checkpoint_dir=None):
T
done  
typhoonzero 已提交
163
        """
T
typhoonzero 已提交
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
        Transpile the program to distributed data-parallelism programs.
        The main_program will be transformed to use a remote parameter server
        to do parameter optimization. And the optimization graph will be put
        into a parameter server program.

        Use different methods to split trainable variables to different
        parameter servers.

        Steps to transpile trainer:
        1. split variable to multiple blocks, aligned by product(dim[1:]) (width).
        2. rename splited grad variables to add trainer_id suffix ".trainer_%d".
        3. modify trainer program add split_op to each grad variable.
        4. append send_op to send splited variables to server and fetch
            params(splited blocks or origin param) from server.
        5. append concat_op to merge splited blocks to update local weights.

        Steps to transpile pserver:
        1. create new program for parameter server.
        2. create params and grad variables that assigned to current server instance.
        3. create a sub-block in the server side program
        4. append ops that should run on current server instance.
        5. add listen_and_serv op

        :param trainer_id: one unique id for each trainer in a job.
        :type trainer_id: int
        :param program: program to transpile, default is default_main_program
        :type program: Program
        :param pservers: parameter server endpoints like "m1:6174,m2:6174"
        :type pservers: string
        :param trainers: total number of workers/trainers in the job
        :type trainers: int
        :param split_method: A function to determin how to split variables
            to different servers equally.
        :type split_method: function
        :type sync_mode: boolean default True
        :param sync_mode: if sync_mode is set True, it means that dist transpiler
        will transpile the program into sync_mode pserver and trainer program.
T
done  
typhoonzero 已提交
201
        """
T
typhoonzero 已提交
202
        assert (callable(split_method))
T
done  
typhoonzero 已提交
203 204
        if program is None:
            program = default_main_program()
205 206
        self.origin_program = program
        self.trainer_num = trainers
Q
tmp  
qiaolongfei 已提交
207
        self.sync_mode = sync_mode
T
typhoonzero 已提交
208 209 210 211
        # TODO(typhoonzero): currently trainer_id is fetched from cluster system
        # like Kubernetes, we should port this to use etcd later when developing
        # fluid distributed training with fault-tolerance.
        self.trainer_id = trainer_id
T
typhoonzero 已提交
212
        pserver_endpoints = pservers.split(",")
213
        self.pserver_endpoints = pserver_endpoints
Y
Yancey1989 已提交
214
        self.optimize_ops, params_grads = self._get_optimize_pass()
215

T
tangwei12 已提交
216 217 218 219 220
        # is_chief (no.0 triner) for checkpoint
        # the no.0 trainer will save all variables and its own reader offset to checkpoint
        # other trianers will save its own reader offset to checkpoint
        self.is_chief = trainer_id == 0

221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        # process lookup_table_op
        # 1. check all lookup_table_op is distributed
        # 2. check all lookup_table_op share the same table.
        distributed_lookup_table_ops = []
        # support only one distributed_lookup_table now
        self.table_name = None
        for op in program.global_block().ops:
            if op.type == LOOKUP_TABLE_TYPE:
                if op.attrs['is_distributed'] is True:
                    if self.table_name is None:
                        self.table_name = op.input("W")[0]
                    if self.table_name != op.input("W")[0]:
                        raise RuntimeError("all distributed lookup_table_ops"
                                           " should have only one table")
                    distributed_lookup_table_ops.append(op)
                else:
                    if self.table_name is not None:
                        assert op.input("W")[0] != self.table_name

        self.has_distributed_lookup_table = len(
            distributed_lookup_table_ops) > 0
T
typhoonzero 已提交
242

243 244
        # step1: For large parameters and gradients, split them into smaller
        # blocks.
T
typhoonzero 已提交
245 246 247 248 249 250 251 252
        param_list = []
        grad_list = []
        for p, g in params_grads:
            # skip parameter marked not trainable
            if type(p) == Parameter and p.trainable == False:
                continue
            param_list.append(p)
            grad_list.append(g)
253 254 255 256 257 258 259

        if self.has_distributed_lookup_table:
            param_list = [
                param for param in param_list if param.name != self.table_name
            ]
            grad_list = [
                grad for grad in grad_list
T
typhoonzero 已提交
260
                if grad.name != grad_var_name(self.table_name)
261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
            ]
            self.table_param_grad = [
                param_grad for param_grad in params_grads
                if param_grad[0].name == self.table_name
            ][0]
            table_grad_var = self.table_param_grad[1]
            self.table_grad_list = [
                program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, trainer_id, index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(len(self.pserver_endpoints))
            ]

T
typhoonzero 已提交
277 278
        grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
        param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
279 280
        # step2: Create new vars for the parameters and gradients blocks and
        # add ops to do the split.
T
typhoonzero 已提交
281
        grad_var_mapping = self._append_split_op(program, grad_blocks)
282 283 284 285
        param_var_mapping = self._create_vars_from_blocklist(program,
                                                             param_blocks)
        # step3: Add gradients as send op inputs and parameters as send
        # op outputs.
T
typhoonzero 已提交
286
        send_inputs = []
T
typhoonzero 已提交
287
        send_outputs = []
T
typhoonzero 已提交
288 289 290 291 292 293
        for b in grad_blocks:  # append by order
            varname, block_id, _ = b.split(":")
            send_inputs.append(grad_var_mapping[varname][int(block_id)])
        for b in param_blocks:
            varname, block_id, _ = b.split(":")
            send_outputs.append(param_var_mapping[varname][int(block_id)])
294 295
        # let send_op know which endpoint to send which var to, eplist has the same
        # order as send_inputs.
T
typhoonzero 已提交
296
        eplist = split_method(send_inputs, pserver_endpoints)
297
        # create mapping of endpoint -> split var to create pserver side program
T
typhoonzero 已提交
298 299 300 301 302 303 304 305
        self.param_grad_ep_mapping = dict()
        for i, ep in enumerate(eplist):
            param = send_outputs[i]
            grad = send_inputs[i]
            if not self.param_grad_ep_mapping.has_key(ep):
                self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
            self.param_grad_ep_mapping[ep]["params"].append(param)
            self.param_grad_ep_mapping[ep]["grads"].append(grad)
T
typhoonzero 已提交
306

T
typhoonzero 已提交
307
        rpc_client_var = program.global_block().create_var(
308
            name=RPC_CLIENT_VAR_NAME,
T
typhoonzero 已提交
309
            persistable=True,
T
typhoonzero 已提交
310
            type=core.VarDesc.VarType.RAW)
T
typhoonzero 已提交
311

312
        # create send_op
T
typhoonzero 已提交
313
        program.global_block().append_op(
T
typhoonzero 已提交
314 315
            type="send",
            inputs={"X": send_inputs},
T
typhoonzero 已提交
316 317
            outputs={"Out": send_outputs,
                     "RPCClient": rpc_client_var},
Q
qiaolongfei 已提交
318 319 320 321 322
            attrs={
                "endpoints": pserver_endpoints,
                "epmap": eplist,
                "sync_mode": self.sync_mode
            })
T
tangwei12 已提交
323

T
tangwei12 已提交
324 325 326 327 328
        if checkpoint_dir and self.is_chief:
            program.global_block().create_var(
                name=SERIAL_VAR_NAME,
                persistable=True,
                type=core.VarDesc.VarType.RAW)
T
tangwei12 已提交
329

T
tangwei12 已提交
330 331 332 333
            save_vars = []
            for var in self.origin_program.list_vars():
                if self._is_persistable(var):
                    save_vars.append(var.name)
T
tangwei12 已提交
334

T
tangwei12 已提交
335 336 337 338 339
            program.global_block().append_op(
                type="checkpoint_save",
                inputs={"X": save_vars},
                attrs={"overwrite": True,
                       "dir": checkpoint_dir})
T
tangwei12 已提交
340

341
        # step4: Concat the parameters splits together after recv.
T
typhoonzero 已提交
342
        for varname, splited_var in param_var_mapping.iteritems():
T
typhoonzero 已提交
343 344
            if len(splited_var) <= 1:
                continue
T
typhoonzero 已提交
345
            orig_param = program.global_block().vars[varname]
T
typhoonzero 已提交
346
            program.global_block().append_op(
T
typhoonzero 已提交
347
                type="concat",
T
typhoonzero 已提交
348
                inputs={"X": splited_var},
T
typhoonzero 已提交
349
                outputs={"Out": [orig_param]},
T
typhoonzero 已提交
350
                attrs={"axis": 0})
T
typhoonzero 已提交
351

352 353 354 355 356 357
        if self.has_distributed_lookup_table:
            self._replace_lookup_table_op_with_prefetch(program, rpc_client_var,
                                                        eplist)
            self._split_table_grad_and_add_send_vars(program, rpc_client_var,
                                                     pserver_endpoints)

T
typhoonzero 已提交
358 359
    def get_trainer_program(self):
        # remove optimize ops and add a send op to main_program
360
        delete_ops(self.origin_program.global_block(), self.optimize_ops)
361
        # FIXME(typhoonzero): serialize once will fix error occurs when clone.
362 363
        self.origin_program.__str__()
        return self.origin_program
T
typhoonzero 已提交
364 365 366 367

    def get_pserver_program(self, endpoint):
        """
        Get pserver side program using the endpoint.
368
        TODO(panyx0718): Revisit this assumption. what if #blocks > #pservers.
T
typhoonzero 已提交
369 370 371 372 373 374
        NOTE: assume blocks of the same variable is not distributed
        on the same pserver, only change param/grad varnames for
        trainers to fetch.
        """
        # step1
        pserver_program = Program()
375
        # step2: Create vars to receive vars at parameter servers.
T
typhoonzero 已提交
376 377 378 379 380 381 382 383
        recv_inputs = []
        for v in self.param_grad_ep_mapping[endpoint]["params"]:
            self._clone_var(pserver_program.global_block(), v)
        for v in self.param_grad_ep_mapping[endpoint]["grads"]:
            # create vars for each trainer in global scope, so
            # we don't need to create them when grad arrives.
            # change client side var name to origin name by
            # removing ".trainer_%d" suffix
T
update  
typhoonzero 已提交
384 385 386 387 388 389

            suff_idx = v.name.find(".trainer_")
            if suff_idx >= 0:
                orig_var_name = v.name[:suff_idx]
            else:
                orig_var_name = v.name
T
typhoonzero 已提交
390 391 392 393 394 395 396 397 398
            # NOTE: single_trainer_var must be created for multi-trainer
            # case to merge grads from multiple trainers
            single_trainer_var = \
                pserver_program.global_block().create_var(
                    name=orig_var_name,
                    persistable=True,
                    type=v.type,
                    dtype=v.dtype,
                    shape=v.shape)
399
            if self.sync_mode and self.trainer_num > 1:
400
                for trainer_id in xrange(self.trainer_num):
T
typhoonzero 已提交
401 402 403 404 405 406 407 408 409
                    var = pserver_program.global_block().create_var(
                        name="%s.trainer_%d" % (orig_var_name, trainer_id),
                        persistable=False,
                        type=v.type,
                        dtype=v.dtype,
                        shape=v.shape)
                    recv_inputs.append(var)
            else:
                recv_inputs.append(single_trainer_var)
410

Q
qiaolongfei 已提交
411
        # step 3
412
        # Create a union-find data structure from optimize ops,
T
typhoonzero 已提交
413 414 415
        # If two ops are connected, we could add these two ops
        # into one set.
        ufind = self._create_ufind(self.optimize_ops)
Q
qiaolongfei 已提交
416
        # step 3.2
T
typhoonzero 已提交
417 418 419 420 421 422
        # Iterate through the ops and append optimize op which
        # located on current pserver
        opt_op_on_pserver = []
        for _, op in enumerate(self.optimize_ops):
            if self._is_opt_op(op) and self._is_opt_op_on_pserver(endpoint, op):
                opt_op_on_pserver.append(op)
Q
qiaolongfei 已提交
423
        # step 3.3
T
typhoonzero 已提交
424
        # Iterate through the ops, and if an op and the optimize ops
425
        # which located on current pserver are in one set, then
T
typhoonzero 已提交
426
        # append it into the sub program.
T
typhoonzero 已提交
427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442

        # We try to put optimization program run parallelly, assume
        # optimization program always looks like:
        #
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # prevop -> prevop -> opt op -> following op -> following op; ->
        # global op -> global op
        #
        # we put operators that can run parallelly to many program blocks.
        # in above example, we seperate ops by the ";". Global ops must run
        # after all the optimize ops finished.

        global_ops = []
        # HACK: optimization global ops only used to scale beta1 and beta2
        # replace it with dependency engine.
        for op in self.optimize_ops:
443 444
            if self._is_adam_connected_op(op):
                global_ops.append(op)
T
typhoonzero 已提交
445

Q
qiaolongfei 已提交
446
        def __append_optimize_op__(op, block, grad_to_block_id):
T
typhoonzero 已提交
447
            if self._is_opt_op(op):
Q
qiaolongfei 已提交
448
                self._append_pserver_ops(block, op, endpoint, grad_to_block_id,
T
typhoonzero 已提交
449 450 451 452
                                         default_main_program())
            else:
                self._append_pserver_non_opt_ops(block, op)

453
        # append lr decay ops to the child block if exists
454 455
        lr_ops = self._get_lr_ops()
        if len(lr_ops) > 0:
Q
qiaolongfei 已提交
456 457
            lr_decay_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
458
            for _, op in enumerate(lr_ops):
459
                self._append_pserver_non_opt_ops(lr_decay_block, op)
460

T
typhoonzero 已提交
461
        # append op to the current block
Q
qiaolongfei 已提交
462
        grad_to_block_id = []
Q
qiaolongfei 已提交
463
        pre_block_idx = pserver_program.num_blocks - 1
T
typhoonzero 已提交
464
        for idx, opt_op in enumerate(opt_op_on_pserver):
465
            per_opt_block = pserver_program.create_block(pre_block_idx)
T
typhoonzero 已提交
466 467
            for _, op in enumerate(self.optimize_ops):
                # optimizer is connected to itself
468
                if ufind.is_connected(op, opt_op) and op not in global_ops:
Q
qiaolongfei 已提交
469
                    __append_optimize_op__(op, per_opt_block, grad_to_block_id)
T
typhoonzero 已提交
470 471

        # append global ops
472
        if global_ops:
Q
qiaolongfei 已提交
473 474 475
            opt_state_block = pserver_program.create_block(
                pserver_program.num_blocks - 1)
            for glb_op in global_ops:
X
Xi Chen 已提交
476 477
                __append_optimize_op__(glb_op, opt_state_block,
                                       grad_to_block_id)
T
typhoonzero 已提交
478 479 480 481 482 483 484 485 486

        # NOT USED: single block version:
        #
        # for _, op in enumerate(self.optimize_ops):
        #     for _, opt_op in enumerate(opt_op_on_pserver):
        #         if ufind.is_connected(op, opt_op):
        #             __append_optimize_op__(glb_op, optimize_block)
        #             break

487 488 489 490
        # process distributed lookup_table
        prefetch_block = None
        if self.has_distributed_lookup_table:
            pserver_index = self.pserver_endpoints.index(endpoint)
491
            table_opt_block = self._create_table_optimize_block(
Q
qiaolongfei 已提交
492
                pserver_index, pserver_program, pre_block_idx)
493
            prefetch_block = self._create_prefetch_block(
494
                pserver_index, pserver_program, table_opt_block)
495 496 497 498 499 500 501 502 503

        # NOTE: if has_distributed_lookup_table is False, then prefetch_block will
        # not be executed, so it's safe to use optimize_block to hold the place
        if self.has_distributed_lookup_table:
            assert prefetch_block is not None
        else:
            assert prefetch_block is None
            prefetch_block = pserver_program.global_block()

T
typhoonzero 已提交
504 505 506 507 508 509
        # step5 append the listen_and_serv op
        pserver_program.global_block().append_op(
            type="listen_and_serv",
            inputs={'X': recv_inputs},
            outputs={},
            attrs={
Q
qiaolongfei 已提交
510
                "OptimizeBlock": pserver_program.block(1),
T
typhoonzero 已提交
511
                "endpoint": endpoint,
512
                "Fanin": self.trainer_num,
Q
tmp  
qiaolongfei 已提交
513 514
                "PrefetchBlock": prefetch_block,
                "sync_mode": self.sync_mode,
T
tangwei12 已提交
515
                "grad_to_block_id": grad_to_block_id
T
typhoonzero 已提交
516
            })
517

T
typhoonzero 已提交
518 519 520
        pserver_program.sync_with_cpp()
        return pserver_program

T
tangwei12 已提交
521
    def get_train_startup_program(self, checkpoint_load_dir=None):
T
tangwei12 已提交
522 523 524 525 526
        """
        Get train startup program.
        If checkpoint_load_dir is None, rerurn default startup program.
        IF checkpoint_load_dir is Exist, add checkpoint_load op and load Var.
        """
T
tangwei12 已提交
527 528 529 530 531
        startup_prog = default_startup_program()

        if not checkpoint_load_dir:
            return startup_prog

T
tangwei12 已提交
532
        load_vars = []
T
tangwei12 已提交
533
        for var in startup_prog.list_vars():
T
tangwei12 已提交
534
            if self._is_persistable(var):
T
tangwei12 已提交
535
                load_vars.append(var.name)
T
tangwei12 已提交
536

T
tangwei12 已提交
537 538
        serial_number = self._get_lastest_checkpoint_dir(checkpoint_load_dir)

T
tangwei12 已提交
539
        startup_prog.global_block().append_op(
T
tangwei12 已提交
540
            type="checkpoint_load",
T
tangwei12 已提交
541 542 543
            inputs={"X": load_vars},
            attrs={"dir": checkpoint_load_dir,
                   "Serial": serial_number})
T
tangwei12 已提交
544 545
        return startup_prog

T
tangwei12 已提交
546 547 548 549
    def get_startup_program(self,
                            endpoint,
                            pserver_program,
                            checkpoint_load_dir=None):
T
typhoonzero 已提交
550 551 552 553 554 555
        """
        Get startup program for current parameter server.
        Modify operator input variables if there are variables that
        were split to several blocks.
        """
        s_prog = Program()
T
typhoonzero 已提交
556
        orig_s_prog = default_startup_program()
T
typhoonzero 已提交
557 558 559 560 561 562 563 564 565 566 567 568 569
        params = self.param_grad_ep_mapping[endpoint]["params"]

        def _get_splited_name_and_shape(varname):
            for idx, splited_param in enumerate(params):
                pname = splited_param.name
                if same_or_split_var(pname, varname) and varname != pname:
                    return pname, splited_param.shape
            return "", []

        # 1. create vars in pserver program to startup program
        pserver_vars = pserver_program.global_block().vars
        created_var_map = dict()
        for _, var in pserver_vars.iteritems():
T
update  
typhoonzero 已提交
570
            tmpvar = s_prog.global_block().clone_variable(var)
T
typhoonzero 已提交
571 572 573
            created_var_map[var.name] = tmpvar

        # 2. rename op outputs
T
tangwei12 已提交
574
        load_vars = []
T
typhoonzero 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
        for op in orig_s_prog.global_block().ops:
            new_inputs = dict()
            new_outputs = dict()
            # do not append startup op if var is not on this pserver
            op_on_pserver = False
            for key in op.output_names:
                newname, _ = _get_splited_name_and_shape(op.output(key)[0])
                if newname:
                    op_on_pserver = True
                    new_outputs[key] = created_var_map[newname]
                elif op.output(key)[0] in pserver_vars:
                    op_on_pserver = True
                    new_outputs[key] = pserver_vars[op.output(key)[0]]

            # most startup program ops have no inputs
            new_inputs = self._get_input_map_from_op(pserver_vars, op)

            if op_on_pserver:
                if op.type in [
                        "gaussian_random", "fill_constant", "uniform_random"
                ]:
                    op.attrs["shape"] = new_outputs["Out"].shape
                s_prog.global_block().append_op(
                    type=op.type,
                    inputs=new_inputs,
                    outputs=new_outputs,
                    attrs=op.attrs)
T
tangwei12 已提交
602 603
                for var in new_outputs.values():
                    load_vars.append(var.name)
T
tangwei12 已提交
604
        # add checkpoint op
T
tangwei12 已提交
605 606 607
        if not checkpoint_load_dir:
            return s_prog

T
tangwei12 已提交
608 609
        serial_number = self._get_lastest_checkpoint_dir(checkpoint_load_dir)

T
tangwei12 已提交
610 611 612
        s_prog.global_block().append_op(
            type="checkpoint_load",
            inputs={"X": load_vars},
T
tangwei12 已提交
613 614 615
            attrs={"dir": checkpoint_load_dir,
                   "Serial": serial_number})

T
typhoonzero 已提交
616 617
        return s_prog

T
tangwei12 已提交
618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656
    def _is_persistable(self, var):
        """only save LodTensor variable"""
        if var.desc.type() == core.VarDesc.VarType.FEED_MINIBATCH or \
                var.desc.type() == core.VarDesc.VarType.FETCH_LIST or \
                var.desc.type() == core.VarDesc.VarType.RAW :
            return False
        return var.persistable

    def _get_lastest_checkpoint_dir(self, checkpoint_dir):
        """
        get the biggest number in checkpoint_dir, which has _SUCCESS
        """
        if not checkpoint_dir.strip():
            return ""

        def has_success(checkpoint_dir, cur_dir):
            """
            is _SUCCESS in this dir
            """
            if not os.path.isdir(cur_dir):
                return -1

            try:
                int(cur_dir)
            except ValueError:
                return -1

            success_path = os.path.join(checkpoint_dir, cur_dir, SUCCESS)
            if os.path.isfile(success_path):
                return int(cur_dir)

        current_dir = 0
        dirs = os.listdir(checkpoint_dir)
        for cur_dir in dirs:
            success_num = has_success(checkpoint_dir, cur_dir)
            if success_num > current_dir:
                current_dir = success_num
        return str(current_dir)

657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
    # transpiler function for dis lookup_table
    def _replace_lookup_table_op_with_prefetch(self, program, rpc_client_var,
                                               eplist):
        # 1. replace lookup_table_op with split_ids_op -> prefetch_op -> sum_op
        self.prefetch_input_vars = None
        self.prefetch_output_vars = None

        continue_search_lookup_table_op = True
        while continue_search_lookup_table_op:
            continue_search_lookup_table_op = False
            all_ops = program.global_block().ops
            for op in all_ops:
                if op.type == LOOKUP_TABLE_TYPE:
                    continue_search_lookup_table_op = True

                    op_index = list(all_ops).index(op)
                    ids_name = op.input("Ids")
                    out_name = op.output("Out")

                    if self.prefetch_input_vars is None:
                        ids_var = program.global_block().vars[ids_name[0]]
                        self.prefetch_input_vars = self.create_splited_vars(
                            source_var=ids_var,
                            block=program.global_block(),
                            tag="_prefetch_in_")
                    if self.prefetch_output_vars is None:
                        out_var = program.global_block().vars[out_name[0]]
                        self.prefetch_output_vars = self.create_splited_vars(
                            source_var=out_var,
                            block=program.global_block(),
                            tag="_prefetch_out_")

                    # insert split_ids_op
                    program.global_block().insert_op(
                        index=op_index,
                        type="split_ids",
                        inputs={
                            'Ids': [
                                program.global_block().vars[varname]
                                for varname in ids_name
                            ]
                        },
                        outputs={"Out": self.prefetch_input_vars})

                    # insert prefetch_op
                    program.global_block().insert_op(
                        index=op_index + 1,
                        type="prefetch",
                        inputs={'X': self.prefetch_input_vars},
                        outputs={
                            "Out": self.prefetch_output_vars,
                            "RPCClient": rpc_client_var
                        },
                        attrs={"epmap": eplist})

                    # insert concat_op
                    program.global_block().insert_op(
                        index=op_index + 2,
                        type="concat",
                        inputs={'X': self.prefetch_output_vars},
                        outputs={
                            "Out": [
                                program.global_block().vars[varname]
                                for varname in out_name
                            ]
                        },
                        attrs={"axis": 0})

                    # delete lookup_table_op
726
                    delete_ops(program.global_block(), [op])
727 728 729 730 731 732 733 734
                    # break for loop
                    break

    def _split_table_grad_and_add_send_vars(self, program, rpc_client_var,
                                            pserver_endpoints):
        # 2. add split_ids_op and send_vars_op to send gradient to pservers
        # there should only be one table_name
        all_ops = program.global_block().ops
T
typhoonzero 已提交
735
        table_grad_name = grad_var_name(self.table_name)
736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773
        for op in all_ops:
            if table_grad_name in op.output_arg_names:
                op_index = list(all_ops).index(op)
                # insert split_ids_op
                program.global_block().insert_op(
                    index=op_index + 1,
                    type="split_ids",
                    inputs={
                        'Ids': [program.global_block().vars[table_grad_name]]
                    },
                    outputs={"Out": self.table_grad_list})
                program.global_block().insert_op(
                    index=op_index + 2,
                    type="send_vars",
                    inputs={'X': self.table_grad_list},
                    outputs={"RPCClient": rpc_client_var},
                    attrs={"sync_send": True,
                           "epmap": pserver_endpoints})
                break

    def _create_prefetch_block(self, pserver_index, pserver_program,
                               optimize_block):
        # STEP: create prefetch block
        table_var = pserver_program.global_block().vars[self.table_name]
        prefetch_block = pserver_program.create_block(optimize_block.idx)
        trainer_ids = self.prefetch_input_vars[pserver_index]
        pserver_ids = pserver_program.global_block().create_var(
            name=trainer_ids.name,
            type=trainer_ids.type,
            shape=trainer_ids.shape,
            dtype=trainer_ids.dtype)
        trainer_out = self.prefetch_output_vars[pserver_index]
        pserver_out = pserver_program.global_block().create_var(
            name=trainer_out.name,
            type=trainer_out.type,
            shape=trainer_out.shape,
            dtype=trainer_out.dtype)
        prefetch_block.append_op(
Y
Yancey1989 已提交
774
            type="lookup_sparse_table",
775 776 777 778 779 780 781 782 783 784 785
            inputs={'Ids': pserver_ids,
                    "W": table_var},
            outputs={"Out": pserver_out},
            attrs={
                "is_sparse": True,  # has no effect on lookup_table op
                "is_distributed": True,
                "padding_idx": -1
            })
        return prefetch_block

    def _create_table_optimize_block(self, pserver_index, pserver_program,
Q
qiaolongfei 已提交
786
                                     pre_block_idx):
787 788 789 790 791 792 793 794 795 796 797
        def _clone_var(block, var, persistable=True):
            assert isinstance(var, Variable)
            return block.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                persistable=persistable)

        # STEP: create table optimize block
        # create table param and grad var in pserver program
Y
Yancey1989 已提交
798 799 800 801 802 803 804 805
        origin_param_var = self.origin_program.global_block().vars[
            self.table_name]
        param_var = pserver_program.global_block().create_var(
            name=origin_param_var.name,
            shape=origin_param_var.shape,
            dtype=origin_param_var.dtype,
            type=core.VarDesc.VarType.SELECTED_ROWS,
            persistable=True)
806 807
        grad_var = _clone_var(
            pserver_program.global_block(),
T
typhoonzero 已提交
808
            self.origin_program.global_block().vars[grad_var_name(
809 810 811 812 813 814 815 816
                self.table_name)],
            persistable=False)

        # create table optimize block in pserver program
        table_opt_op = [
            op for op in self.optimize_ops
            if op.input("Param")[0] == self.table_name
        ][0]
Q
qiaolongfei 已提交
817
        table_opt_block = pserver_program.create_block(pre_block_idx)
818 819 820
        # only support sgd now
        assert table_opt_op.type == "sgd"

821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
        if self.sync_mode:
            # create grad vars in pserver program
            table_grad_var = self.table_param_grad[1]
            table_grad_list = [
                pserver_program.global_block().create_var(
                    name="%s.trainer_%d.pserver_%d" %
                    (table_grad_var.name, index, pserver_index),
                    type=table_grad_var.type,
                    shape=table_grad_var.shape,
                    dtype=table_grad_var.dtype)
                for index in range(self.trainer_num)
            ]

            # append sum op for table_grad_list
            table_opt_block.append_op(
                type="sum",
                inputs={"X": table_grad_list},
                outputs={"Out": [grad_var]})
839 840 841 842 843 844 845 846 847 848 849 850 851 852 853

        lr_var = pserver_program.global_block().vars[table_opt_op.input(
            "LearningRate")[0]]
        inputs = {
            "Param": [param_var],
            "Grad": [grad_var],
            "LearningRate": [lr_var]
        }
        outputs = {"ParamOut": [param_var]}
        table_opt_block.append_op(
            type=table_opt_op.type,
            inputs=inputs,
            outputs=outputs,
            attrs=table_opt_op.attrs)

854 855
        return table_opt_block

T
typhoonzero 已提交
856 857 858 859 860 861
    # ====================== private transpiler functions =====================
    def _create_vars_from_blocklist(self,
                                    program,
                                    block_list,
                                    add_trainer_suffix=False):
        """
862
        Create vars for each split.
T
typhoonzero 已提交
863 864
        NOTE: only grads need to be named for different trainers, use
              add_trainer_suffix to rename the grad vars.
865
        :return: A dict mapping from original var name to each var split.
T
typhoonzero 已提交
866
        """
T
typhoonzero 已提交
867
        block_map = dict()
T
typhoonzero 已提交
868
        var_mapping = dict()
T
typhoonzero 已提交
869 870 871 872 873 874
        for block_str in block_list:
            varname, offset, size = block_str.split(":")
            if not block_map.has_key(varname):
                block_map[varname] = []
            block_map[varname].append((long(offset), long(size)))
        for varname, splited in block_map.iteritems():
T
typhoonzero 已提交
875
            orig_var = program.global_block().var(varname)
T
typhoonzero 已提交
876
            if len(splited) == 1:
877
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
878 879 880 881 882 883 884 885
                    new_var_name = "%s.trainer_%d" % \
                        (orig_var.name, self.trainer_id)
                    program.global_block().rename_var(varname, new_var_name)
                    var_mapping[varname] = \
                        [program.global_block().var(new_var_name)]
                else:
                    var_mapping[varname] = \
                        [program.global_block().var(orig_var.name)]
T
typhoonzero 已提交
886
                continue
T
typhoonzero 已提交
887 888

            var_mapping[varname] = []
T
typhoonzero 已提交
889 890 891 892
            orig_shape = orig_var.shape
            orig_dim1_flatten = 1
            if len(orig_shape) >= 2:
                orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
T
typhoonzero 已提交
893

T
typhoonzero 已提交
894
            for i, block in enumerate(splited):
T
typhoonzero 已提交
895
                size = block[1]
T
typhoonzero 已提交
896 897 898 899
                rows = size / orig_dim1_flatten
                splited_shape = [rows]
                if len(orig_shape) >= 2:
                    splited_shape.extend(orig_shape[1:])
T
typhoonzero 已提交
900
                new_var_name = ""
901
                if self.sync_mode and add_trainer_suffix:
T
typhoonzero 已提交
902 903 904 905 906
                    new_var_name = "%s.block%d.trainer_%d" % \
                        (varname, i, self.trainer_id)
                else:
                    new_var_name = "%s.block%d" % \
                        (varname, i)
T
typhoonzero 已提交
907
                var = program.global_block().create_var(
T
typhoonzero 已提交
908 909
                    name=new_var_name,
                    persistable=False,
T
typhoonzero 已提交
910
                    dtype=orig_var.dtype,
911
                    type=orig_var.type,
T
typhoonzero 已提交
912
                    shape=splited_shape)  # flattend splited var
T
typhoonzero 已提交
913
                var_mapping[varname].append(var)
T
typhoonzero 已提交
914
            program.global_block().sync_with_cpp()
T
typhoonzero 已提交
915
        return var_mapping
T
done  
typhoonzero 已提交
916

917 918 919 920 921 922 923 924 925 926 927
    def create_splited_vars(self, source_var, block, tag):
        return [
            block.create_var(
                name=str(source_var.name + tag + str(index)),
                type=source_var.type,
                shape=source_var.shape,
                dtype=source_var.dtype)
            for index in range(len(self.pserver_endpoints))
        ]

    def _clone_var(self, block, var, persistable=True):
T
done  
typhoonzero 已提交
928 929 930 931 932 933 934
        assert isinstance(var, Variable)
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
935
            persistable=persistable)
T
done  
typhoonzero 已提交
936

T
typhoonzero 已提交
937
    def _append_split_op(self, program, gradblocks):
938
        # Split variables that need to be split and append respective ops
T
typhoonzero 已提交
939
        add_suffix = False
940
        if self.trainer_num > 1:
T
typhoonzero 已提交
941
            add_suffix = True
T
typhoonzero 已提交
942
        var_mapping = self._create_vars_from_blocklist(
T
typhoonzero 已提交
943
            program, gradblocks, add_trainer_suffix=add_suffix)
T
typhoonzero 已提交
944
        for varname, splited_vars in var_mapping.iteritems():
T
typhoonzero 已提交
945 946
            # variable that don't need to split have empty splited_vars
            if len(splited_vars) <= 1:
T
typhoonzero 已提交
947
                continue
T
typhoonzero 已提交
948
            orig_var = program.global_block().vars[varname]
T
typhoonzero 已提交
949
            if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS:
950 951 952 953 954 955 956 957
                height_sections = []
                for v in splited_vars:
                    height_sections.append(v.shape[0])
                program.global_block().append_op(
                    type="split_selected_rows",
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"height_sections": height_sections})
T
typhoonzero 已提交
958
            elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR:
959 960 961 962
                sections = []
                for v in splited_vars:
                    sections.append(v.shape[0])
                program.global_block().append_op(
T
typhoonzero 已提交
963
                    type="split_byref",
964 965 966 967 968 969 970
                    inputs={"X": orig_var},
                    outputs={"Out": splited_vars},
                    attrs={"sections": sections}  # assume split evenly
                )
            else:
                AssertionError("Variable type should be in set "
                               "[LOD_TENSOR, SELECTED_ROWS]")
T
typhoonzero 已提交
971
        return var_mapping
T
done  
typhoonzero 已提交
972

T
typhoonzero 已提交
973 974 975 976
    def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
                                   param_shape):
        """
        Returns the shape for optimizer inputs that need to be reshaped when
977
        Param and Grad is split to multiple servers.
T
typhoonzero 已提交
978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999
        """
        # HACK(typhoonzero): Should use functions of corresponding optimizer in
        # optimizer.py to get the shape, do not  bind this in the transpiler.
        if op_type == "adam":
            if varkey in ["Moment1", "Moment2"]:
                return param_shape
        elif op_type == "adagrad":
            if varkey == "Moment":
                return param_shape
        elif op_type == "adamax":
            if varkey in ["Moment", "InfNorm"]:
                return param_shape
        elif op_type == "momentum":
            if varkey == "Velocity":
                return param_shape
        elif op_type == "":
            if varkey == "Moment":
                return param_shape
        elif op_type == "sgd":
            pass
        return orig_shape

T
typhoonzero 已提交
1000 1001 1002 1003 1004
    def _orig_varname(self, varname):
        suff_idx = varname.find(".trainer_")
        orig_var_name = ""
        if suff_idx >= 0:
            orig_var_name = varname[:suff_idx]
T
typhoonzero 已提交
1005 1006
        else:
            orig_var_name = varname
T
typhoonzero 已提交
1007 1008
        return orig_var_name

1009
    def _append_pserver_ops(self, optimize_block, opt_op, endpoint,
Q
qiaolongfei 已提交
1010
                            grad_to_block_id, origin_program):
1011
        program = optimize_block.program
T
typhoonzero 已提交
1012
        pserver_block = program.global_block()
T
typhoonzero 已提交
1013
        new_inputs = dict()
T
typhoonzero 已提交
1014 1015
        # update param/grad shape first, then other inputs like
        # moment can use the updated shape
T
typhoonzero 已提交
1016
        for key in opt_op.input_names:
T
typhoonzero 已提交
1017 1018 1019
            if key == "Grad":
                grad_block = None
                for g in self.param_grad_ep_mapping[endpoint]["grads"]:
T
typhoonzero 已提交
1020
                    if same_or_split_var(
T
typhoonzero 已提交
1021 1022
                            self._orig_varname(g.name),
                            self._orig_varname(opt_op.input(key)[0])):
T
typhoonzero 已提交
1023 1024 1025 1026 1027 1028
                        grad_block = g
                        break
                if not grad_block:
                    # do not append this op if current endpoint
                    # is not dealing with this grad block
                    return
T
typhoonzero 已提交
1029 1030
                merged_var = \
                    pserver_block.vars[self._orig_varname(grad_block.name)]
Q
qiaolongfei 已提交
1031 1032
                grad_to_block_id.append(merged_var.name + ":" + str(
                    optimize_block.idx))
1033
                if self.sync_mode and self.trainer_num > 1:
T
typhoonzero 已提交
1034
                    vars2merge = []
1035
                    for i in xrange(self.trainer_num):
T
typhoonzero 已提交
1036 1037 1038 1039
                        per_trainer_name = "%s.trainer_%d" % \
                        (self._orig_varname(grad_block.name), i)
                        vars2merge.append(pserver_block.vars[per_trainer_name])

1040
                    optimize_block.append_op(
T
done  
typhoonzero 已提交
1041 1042 1043
                        type="sum",
                        inputs={"X": vars2merge},
                        outputs={"Out": merged_var})
1044
                    # TODO(panyx0718): What if it's SELECTED_ROWS.
1045 1046 1047 1048 1049
                    if not merged_var.type == core.VarDesc.VarType.SELECTED_ROWS:
                        optimize_block.append_op(
                            type="scale",
                            inputs={"X": merged_var},
                            outputs={"Out": merged_var},
1050
                            attrs={"scale": 1.0 / float(self.trainer_num)})
1051

T
typhoonzero 已提交
1052 1053 1054 1055 1056
                new_inputs[key] = merged_var
            elif key == "Param":
                # param is already created on global program
                param_block = None
                for p in self.param_grad_ep_mapping[endpoint]["params"]:
T
typhoonzero 已提交
1057
                    if same_or_split_var(p.name, opt_op.input(key)[0]):
T
typhoonzero 已提交
1058 1059 1060 1061
                        param_block = p
                        break
                if not param_block:
                    return
T
typhoonzero 已提交
1062
                tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1063
                    name=param_block.name,
T
typhoonzero 已提交
1064
                    persistable=True,
T
typhoonzero 已提交
1065 1066 1067
                    dtype=param_block.dtype,
                    shape=param_block.shape)
                new_inputs[key] = tmpvar
1068
            elif key == "LearningRate":
1069
                # learning rate variable has already be created by non-optimize op,
1070
                # don't create it once again.
1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
                lr_varname = opt_op.input(key)[0]
                if pserver_block.vars.has_key(lr_varname):
                    new_inputs[key] = pserver_block.vars[opt_op.input(key)[0]]
                else:
                    origin_var = origin_program.global_block().vars[lr_varname]
                    tmpvar = pserver_block.create_var(
                        name=origin_var.name,
                        persistable=origin_var.persistable,
                        dtype=origin_var.dtype,
                        shape=origin_var.shape)
                    new_inputs[key] = tmpvar
T
typhoonzero 已提交
1082

T
typhoonzero 已提交
1083
        for key in opt_op.input_names:
1084 1085
            new_shape = None
            if key in ["Param", "Grad", "LearningRate"]:
T
typhoonzero 已提交
1086
                continue
1087
            var = self.origin_program.global_block().vars[opt_op.input(key)[0]]
T
typhoonzero 已提交
1088 1089 1090 1091
            # update accumulator variable shape
            param_shape = new_inputs["Param"].shape
            new_shape = self._get_optimizer_input_shape(opt_op.type, key,
                                                        var.shape, param_shape)
T
typhoonzero 已提交
1092
            tmpvar = pserver_block.create_var(
T
typhoonzero 已提交
1093 1094 1095 1096 1097
                name=var.name,
                persistable=var.persistable,
                dtype=var.dtype,
                shape=new_shape)
            new_inputs[key] = tmpvar
T
typhoonzero 已提交
1098

1099
        # change output's ParamOut variable
1100 1101
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1102
        outputs["ParamOut"] = new_inputs["Param"]
T
typhoonzero 已提交
1103

1104
        optimize_block.append_op(
T
typhoonzero 已提交
1105 1106
            type=opt_op.type,
            inputs=new_inputs,
T
typhoonzero 已提交
1107
            outputs=outputs,
T
typhoonzero 已提交
1108 1109
            attrs=opt_op.attrs)

1110 1111
    def _append_pserver_non_opt_ops(self, optimize_block, opt_op):
        program = optimize_block.program
1112
        # Append the ops for parameters that do not need to be optimized/updated
1113 1114
        inputs = self._get_input_map_from_op(
            self.origin_program.global_block().vars, opt_op)
1115 1116 1117 1118
        for varlist in inputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

T
typhoonzero 已提交
1119
            for var in varlist:
1120 1121
                if not program.global_block().vars.has_key(var.name):
                    program.global_block().create_var(
T
typhoonzero 已提交
1122 1123 1124 1125 1126
                        name=var.name,
                        persistable=var.persistable,
                        dtype=var.dtype,
                        shape=var.shape)

1127 1128
        outputs = self._get_output_map_from_op(
            self.origin_program.global_block().vars, opt_op)
T
typhoonzero 已提交
1129

1130 1131 1132 1133 1134
        for varlist in outputs.itervalues():
            if not isinstance(varlist, list):
                varlist = [varlist]

            for var in varlist:
T
update  
typhoonzero 已提交
1135
                program.global_block().clone_variable(var)
1136

1137
        optimize_block.append_op(
T
typhoonzero 已提交
1138
            type=opt_op.type,
T
typhoonzero 已提交
1139 1140
            inputs=inputs,
            outputs=outputs,
T
typhoonzero 已提交
1141 1142
            attrs=opt_op.attrs)

1143 1144 1145 1146
    def _is_op_connected(self, op1, op2):
        # If one op's input is another op's output or
        # one op's output is another op's input, we say
        # the two operator is connected.
T
typhoonzero 已提交
1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159
        def _append_inname_remove_beta(varname_list):
            op_input_names = []
            for in_name in varname_list:
                # HACK: remove beta1 and beta2 to avoid let all
                # ops connected.
                if in_name.startswith("beta2_pow_acc") or \
                    in_name.startswith("beta1_pow_acc"):
                    continue
                else:
                    op_input_names.append(in_name)
            return op_input_names

        op1_input_names = _append_inname_remove_beta(op1.desc.input_arg_names())
T
typhoonzero 已提交
1160 1161
        op1_output_names = op1.desc.output_arg_names()

T
typhoonzero 已提交
1162
        op2_input_names = _append_inname_remove_beta(op2.desc.input_arg_names())
T
typhoonzero 已提交
1163
        op2_output_names = op2.desc.output_arg_names()
1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182

        if set(op1_output_names) & set(op2_input_names) or \
           set(op1_input_names) & set(op2_output_names):
            return True
        return False

    def _create_ufind(self, optimize_ops):
        # Create a unit find data struct by optimize ops
        ufind = UnionFind(optimize_ops)
        for i in xrange(len(optimize_ops)):
            for j in xrange(i, len(optimize_ops)):
                op1 = optimize_ops[i]
                op2 = optimize_ops[j]
                if self._is_op_connected(op1, op2):
                    ufind.union(op1, op2)
        return ufind

    def _is_opt_op(self, op):
        # NOTE: It's a HACK implement.
1183
        # optimize op: SGDOptimize, MomentumOptimizer, AdamOptimizer and etc...
T
typhoonzero 已提交
1184 1185
        if "Param" in op.input_names and \
            "LearningRate" in op.input_names:
1186 1187 1188 1189 1190 1191 1192
            return True
        return False

    def _is_opt_op_on_pserver(self, endpoint, op):
        param_names = [
            p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
        ]
T
typhoonzero 已提交
1193
        if op.input("Param")[0] in param_names:
1194 1195 1196
            return True
        else:
            for n in param_names:
T
typhoonzero 已提交
1197
                param = op.input("Param")[0]
T
typhoonzero 已提交
1198
                if same_or_split_var(n, param) and n != param:
1199 1200 1201
                    return True
            return False

T
typhoonzero 已提交
1202
    def _get_input_map_from_op(self, varmap, op):
1203
        """Returns a dict from op input name to the vars in varmap."""
T
typhoonzero 已提交
1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215
        iomap = dict()
        for key in op.input_names:
            vars = []
            for varname in op.input(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap

    def _get_output_map_from_op(self, varmap, op):
1216
        """Returns a dict from op output name to the vars in varmap."""
T
typhoonzero 已提交
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226
        iomap = dict()
        for key in op.output_names:
            vars = []
            for varname in op.output(key):
                vars.append(varmap[varname])
            if len(vars) == 1:
                iomap[key] = vars[0]
            else:
                iomap[key] = vars
        return iomap
1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237

    def _get_lr_ops(self):
        lr_ops = []
        # find learning rate variables by optimize op
        lr_vars = set()
        for op in self.optimize_ops:
            if self._is_opt_op(op):
                lr_vars.add(op.input("LearningRate")[0])

        find_ops = []
        # find ops which output is lr var
1238
        block = self.origin_program.global_block()
1239 1240 1241 1242 1243
        for op in block.ops:
            if set(op.output_arg_names) & lr_vars:
                find_ops.append(op)
        # make a union find struct by the ops in default_main_program
        ufind = UnionFind(block.ops)
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256
        for op1 in block.ops:
            for op2 in block.ops:
                # NOTE: we need to skip all optimize ops, since it is connected
                # with forward/backward ops and lr ops, we only need the lr ops.
                if op1 != op2 and self._is_op_connected(op1, op2) and \
                    not self._is_opt_op(op1) and not self._is_opt_op(op2):
                    ufind.union(op1, op2)
        # find all ops which is related with lr var
        for op1 in block.ops:
            for op2 in find_ops:
                if ufind.is_connected(op1, op2):
                    lr_ops.append(op1)
1257 1258
                    # we only need to append op for once
                    break
1259
        return lr_ops
Y
Yancey1989 已提交
1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271

    def _get_optimize_pass(self):
        block = self.origin_program.global_block()
        opt_ops = []
        params_grads = []
        for op in block.ops:
            if self._is_opt_op(op):
                opt_ops.append(op)
                params_grads.append((self.origin_program.global_block().var(
                    op.input("Param")[0]),
                                     self.origin_program.global_block().var(
                                         op.input("Grad")[0])))
1272 1273
            elif self._is_adam_connected_op(op):
                opt_ops.append(op)
Y
Yancey1989 已提交
1274 1275 1276
            else:
                pass
        return opt_ops, params_grads
1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288

    def _is_adam_connected_op(self, op):
        """
        A hack function to determinate whether the input operator
        is connected to optimize operator.
        """
        if op.type == "scale":
            for in_name in op.input_arg_names:
                if in_name.startswith("beta1_pow_acc") or \
                        in_name.startswith("beta2_pow_acc"):
                    return True
        return False