gru_unit_op.h 10.3 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
19 20
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/math/blas.h"
G
guosheng 已提交
21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

D
dzhwinter 已提交
30 31 32 33
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

34 35
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };

Q
QI JUN 已提交
36
template <typename DeviceContext, typename T>
37
class GRUUnitKernel : public framework::OpKernel<T> {
G
guosheng 已提交
38
 public:
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  template <typename Device, typename X, typename Y>
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
    if (act_type == identity)
      y.device(d) = x;
    else if (act_type == sigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == tanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == relu)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
53
  void Compute(const framework::ExecutionContext& context) const override {
54 55 56 57 58
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* bias = context.Input<Tensor>("Bias");
    auto* gate = context.Output<Tensor>("Gate");
G
guosheng 已提交
59
    gate->mutable_data<T>(context.GetPlace());
60
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
G
guosheng 已提交
61
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
62
    auto* hidden = context.Output<Tensor>("Hidden");
G
guosheng 已提交
63 64 65 66 67 68 69 70 71 72
    hidden->mutable_data<T>(context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    auto x = EigenMatrix<T>::From(*input);
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
    auto h = EigenMatrix<T>::From(*hidden);
Q
QI JUN 已提交
73 74
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
75 76

    // calculate unactivated gate outputs
G
guosheng 已提交
77 78 79 80 81 82 83 84
    if (bias) {
      auto b = EigenMatrix<T>::From(*bias);
      g.device(place) = x +
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    } else {
      g.device(place) = x;
    }
G
guosheng 已提交
85 86 87 88
    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
    T* gate_data = gate->data<T>();
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
Y
Yu Yang 已提交
89 90 91 92
    auto blas = math::GetBlas<DeviceContext, T>(context);
    blas.GEMM(false, false, batch_size, 2 * frame_size, frame_size, 1,
              hidden_prev_data, frame_size, weight_data, frame_size * 2, 1,
              gate_data, frame_size * 3);
G
guosheng 已提交
93 94

    // calculate activited gate
95 96
    Eigen::array<int, 2> extents{{batch_size, frame_size}};
    Eigen::array<int, 2> u_offsets{{0, 0}};
97 98
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
G
guosheng 已提交
99
    auto u = g.slice(u_offsets, extents);  // update gate
100
    Eigen::array<int, 2> r_offsets{{0, frame_size}};
101 102
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
G
guosheng 已提交
103 104
    auto r = g.slice(r_offsets, extents);  // reset gate
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
Y
Yu Yang 已提交
105 106 107 108
    blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
              reset_hidden_prev_data, frame_size,
              weight_data + frame_size * frame_size * 2, frame_size, 1,
              gate_data + frame_size * 2, frame_size * 3);
G
guosheng 已提交
109

110
    Eigen::array<int, 2> c_offsets{{0, frame_size * 2}};
111 112
    ActCompute(context.Attr<int>("activation"), place,
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
G
guosheng 已提交
113 114 115
    auto c = g.slice(c_offsets, extents);  // output candidate

    // calculate final output
Q
Qiao Longfei 已提交
116
    if (context.Attr<bool>("origin_mode")) {
Q
Qiao Longfei 已提交
117 118 119 120
      h.device(place) = c + u * (h_p - c);  // (1 - u) * c + u * h_p
    } else {
      h.device(place) = u * (c - h_p) + h_p;  // u * c + (1 - u) * h_p
    }
G
guosheng 已提交
121 122 123
  }
};

Q
QI JUN 已提交
124
template <typename DeviceContext, typename T>
125
class GRUUnitGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
126
 public:
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
                      DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == identity)
      dx.device(d) = dy;
    else if (act_type == sigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == tanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == relu)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
143
  void Compute(const framework::ExecutionContext& context) const override {
144 145 146 147 148 149 150
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* gate = context.Input<Tensor>("Gate");
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
G
guosheng 已提交
151
    auto* hidden_prev_grad =
152
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
G
guosheng 已提交
153
    auto* weight_grad =
154 155
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
G
guosheng 已提交
156 157 158 159 160
    Tensor gate_grad;
    Tensor reset_hidden_prev_grad;

    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
161 162
    T* gate_grad_data =
        gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
G
guosheng 已提交
163
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
164 165
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.mutable_data<T>(
        reset_hidden_prev->dims(), context.GetPlace());
G
guosheng 已提交
166 167 168 169 170 171

    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
    auto d_g = EigenMatrix<T>::From(gate_grad);
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
Q
QI JUN 已提交
172 173
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
174

175 176 177
    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

178 179
    Eigen::array<int, 2> extents{{batch_size, frame_size}};
    Eigen::array<int, 2> u_offsets{{0, 0}};
G
guosheng 已提交
180
    auto u = g.slice(u_offsets, extents);  // update gate
181
    Eigen::array<int, 2> r_offsets{{0, frame_size}};
G
guosheng 已提交
182
    auto r = g.slice(r_offsets, extents);  // reset gate
183
    Eigen::array<int, 2> c_offsets{{0, frame_size * 2}};
G
guosheng 已提交
184 185 186
    auto c = g.slice(c_offsets, extents);  // output candidate

    // backward for unactivated update gate
187
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
G
guosheng 已提交
188
                   d_g.slice(u_offsets, extents), d_h * (c - h_p));
G
guosheng 已提交
189
    // backward for unactivated output candidate
190
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
G
guosheng 已提交
191
                   d_g.slice(c_offsets, extents), d_h * u);
G
guosheng 已提交
192
    // backward for reset_hidden_prev
Y
Yu Yang 已提交
193 194 195 196 197
    auto blas = math::GetBlas<DeviceContext, T>(context);
    blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
              gate_grad_data + frame_size * 2, frame_size * 3,
              weight_data + frame_size * frame_size * 2, frame_size, 0,
              reset_hidden_prev_grad_data, frame_size);
G
guosheng 已提交
198
    // backward for unactivated reset gate
199 200
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
201 202 203 204
    // backward for weight
    if (weight_grad) {
      T* weight_grad_data = weight_grad->mutable_data<T>(context.GetPlace());
      // backward for state_weight
Y
Yu Yang 已提交
205 206 207 208
      blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                reset_hidden_prev_data, frame_size,
                gate_grad_data + frame_size * 2, frame_size * 3, 0,
                weight_grad_data + frame_size * frame_size * 2, frame_size);
209 210

      // backward for update_gate_weight and reset_gate_weight
Y
Yu Yang 已提交
211 212 213
      blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                hidden_prev_data, frame_size, gate_grad_data, frame_size * 3, 0,
                weight_grad_data, frame_size * 2);
214
    }
G
guosheng 已提交
215
    // backward for hidden_prev
216 217 218 219
    if (hidden_prev_grad) {
      T* hidden_prev_grad_data =
          hidden_prev_grad->mutable_data<T>(context.GetPlace());
      auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
Q
Qiao Longfei 已提交
220 221 222 223 224
      if (context.Attr<bool>("origin_mode")) {
        d_h_p.device(place) = d_r_h_p * (u.constant(T(1)) - u) + d_h * r;
      } else {
        d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u);
      }
Y
Yu Yang 已提交
225 226 227
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                gate_grad_data, frame_size * 3, weight_data, frame_size * 2, 1,
                hidden_prev_grad_data, frame_size);
228
    }
G
guosheng 已提交
229
    // backward for input
230 231 232 233 234
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto d_x = EigenMatrix<T>::From(*input_grad);
      d_x.device(place) = d_g;
    }
G
guosheng 已提交
235
    // backward for bias
G
guosheng 已提交
236 237
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
238
      auto d_b = EigenVector<T>::Flatten(*bias_grad);
G
guosheng 已提交
239 240
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
    }
G
guosheng 已提交
241 242 243 244 245
  }
};

}  // namespace operators
}  // namespace paddle