gru_unit_op.h 10.0 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
G
guosheng 已提交
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
G
guosheng 已提交
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
G
guosheng 已提交
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
G
guosheng 已提交
14 15 16

#pragma once

Y
Yi Wang 已提交
17 18
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
Y
Yu Yang 已提交
19 20
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/operators/math/blas.h"
G
guosheng 已提交
21 22 23 24 25 26 27 28 29

namespace paddle {
namespace operators {

using Tensor = framework::Tensor;
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenMatrix = framework::EigenMatrix<T, MajorType, IndexType>;

D
dzhwinter 已提交
30 31 32 33
template <typename T, int MajorType = Eigen::RowMajor,
          typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;

34 35
enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 };

Q
QI JUN 已提交
36
template <typename DeviceContext, typename T>
37
class GRUUnitKernel : public framework::OpKernel<T> {
G
guosheng 已提交
38
 public:
39 40 41 42 43 44 45 46 47 48 49 50 51 52
  template <typename Device, typename X, typename Y>
  void ActCompute(const int act_type, const Device& d, X x, Y y) const {
    if (act_type == identity)
      y.device(d) = x;
    else if (act_type == sigmoid)
      SigmoidFunctor<T>()(d, x, y);
    else if (act_type == tanh)
      TanhFunctor<T>()(d, x, y);
    else if (act_type == relu)
      ReluFunctor<T>()(d, x, y);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
53
  void Compute(const framework::ExecutionContext& context) const override {
54 55 56 57 58
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* bias = context.Input<Tensor>("Bias");
    auto* gate = context.Output<Tensor>("Gate");
G
guosheng 已提交
59
    gate->mutable_data<T>(context.GetPlace());
60
    auto* reset_hidden_prev = context.Output<Tensor>("ResetHiddenPrev");
G
guosheng 已提交
61
    reset_hidden_prev->mutable_data<T>(context.GetPlace());
62
    auto* hidden = context.Output<Tensor>("Hidden");
G
guosheng 已提交
63 64 65 66 67 68 69 70 71 72
    hidden->mutable_data<T>(context.GetPlace());

    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

    auto x = EigenMatrix<T>::From(*input);
    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto r_h_p = EigenMatrix<T>::From(*reset_hidden_prev);
    auto h = EigenMatrix<T>::From(*hidden);
Q
QI JUN 已提交
73 74
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
75 76

    // calculate unactivated gate outputs
G
guosheng 已提交
77 78 79 80 81 82 83 84
    if (bias) {
      auto b = EigenMatrix<T>::From(*bias);
      g.device(place) = x +
                        b.reshape(Eigen::array<int, 2>({{1, frame_size * 3}}))
                            .broadcast(Eigen::array<int, 2>({{batch_size, 1}}));
    } else {
      g.device(place) = x;
    }
G
guosheng 已提交
85 86 87 88
    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
    T* gate_data = gate->data<T>();
    T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
Y
Yu Yang 已提交
89 90 91 92
    auto blas = math::GetBlas<DeviceContext, T>(context);
    blas.GEMM(false, false, batch_size, 2 * frame_size, frame_size, 1,
              hidden_prev_data, frame_size, weight_data, frame_size * 2, 1,
              gate_data, frame_size * 3);
G
guosheng 已提交
93 94

    // calculate activited gate
95 96
    Eigen::array<int, 2> extents{{batch_size, frame_size}};
    Eigen::array<int, 2> u_offsets{{0, 0}};
97 98
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(u_offsets, extents), g.slice(u_offsets, extents));
G
guosheng 已提交
99
    auto u = g.slice(u_offsets, extents);  // update gate
100
    Eigen::array<int, 2> r_offsets{{0, frame_size}};
101 102
    ActCompute(context.Attr<int>("gate_activation"), place,
               g.slice(r_offsets, extents), g.slice(r_offsets, extents));
G
guosheng 已提交
103 104
    auto r = g.slice(r_offsets, extents);  // reset gate
    r_h_p.device(place) = r * h_p;         // reset previous hidden state
Y
Yu Yang 已提交
105 106 107 108
    blas.GEMM(false, false, batch_size, frame_size, frame_size, 1,
              reset_hidden_prev_data, frame_size,
              weight_data + frame_size * frame_size * 2, frame_size, 1,
              gate_data + frame_size * 2, frame_size * 3);
G
guosheng 已提交
109

110
    Eigen::array<int, 2> c_offsets{{0, frame_size * 2}};
111 112
    ActCompute(context.Attr<int>("activation"), place,
               g.slice(c_offsets, extents), g.slice(c_offsets, extents));
G
guosheng 已提交
113 114 115
    auto c = g.slice(c_offsets, extents);  // output candidate

    // calculate final output
G
guosheng 已提交
116
    h.device(place) = u * (c - h_p) + h_p;
G
guosheng 已提交
117 118 119
  }
};

Q
QI JUN 已提交
120
template <typename DeviceContext, typename T>
121
class GRUUnitGradKernel : public framework::OpKernel<T> {
G
guosheng 已提交
122
 public:
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138
  template <typename Device, typename X, typename Y, typename DX, typename DY>
  void ActGradCompute(const int act_type, const Device& d, X x, Y y, DX dx,
                      DY dy) const {
    // x is dummy and won't be used even in Relu(use y instead)
    if (act_type == identity)
      dx.device(d) = dy;
    else if (act_type == sigmoid)
      SigmoidGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == tanh)
      TanhGradFunctor<T>()(d, x, y, dy, dx);
    else if (act_type == relu)
      ReluGradFunctor<T>()(d, x, y, dy, dx);
    else
      PADDLE_THROW("unsupported activation type");
  }

G
guosheng 已提交
139
  void Compute(const framework::ExecutionContext& context) const override {
140 141 142 143 144 145 146
    auto* input = context.Input<Tensor>("Input");
    auto* hidden_prev = context.Input<Tensor>("HiddenPrev");
    auto* weight = context.Input<Tensor>("Weight");
    auto* gate = context.Input<Tensor>("Gate");
    auto* reset_hidden_prev = context.Input<Tensor>("ResetHiddenPrev");
    auto* hidden_grad = context.Input<Tensor>(framework::GradVarName("Hidden"));
    auto* input_grad = context.Output<Tensor>(framework::GradVarName("Input"));
G
guosheng 已提交
147
    auto* hidden_prev_grad =
148
        context.Output<Tensor>(framework::GradVarName("HiddenPrev"));
G
guosheng 已提交
149
    auto* weight_grad =
150 151
        context.Output<Tensor>(framework::GradVarName("Weight"));
    auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
G
guosheng 已提交
152 153 154 155 156
    Tensor gate_grad;
    Tensor reset_hidden_prev_grad;

    const T* hidden_prev_data = hidden_prev->data<T>();
    const T* weight_data = weight->data<T>();
157 158
    T* gate_grad_data =
        gate_grad.mutable_data<T>(input->dims(), context.GetPlace());
G
guosheng 已提交
159
    const T* reset_hidden_prev_data = reset_hidden_prev->data<T>();
160 161
    T* reset_hidden_prev_grad_data = reset_hidden_prev_grad.mutable_data<T>(
        reset_hidden_prev->dims(), context.GetPlace());
G
guosheng 已提交
162 163 164 165 166 167

    auto h_p = EigenMatrix<T>::From(*hidden_prev);
    auto g = EigenMatrix<T>::From(*gate);
    auto d_h = EigenMatrix<T>::From(*hidden_grad);
    auto d_g = EigenMatrix<T>::From(gate_grad);
    auto d_r_h_p = EigenMatrix<T>::From(reset_hidden_prev_grad);
Q
QI JUN 已提交
168 169
    auto& place =
        *context.template device_context<DeviceContext>().eigen_device();
G
guosheng 已提交
170

171 172 173
    int batch_size = input->dims()[0];
    int frame_size = hidden_prev->dims()[1];

174 175
    Eigen::array<int, 2> extents{{batch_size, frame_size}};
    Eigen::array<int, 2> u_offsets{{0, 0}};
G
guosheng 已提交
176
    auto u = g.slice(u_offsets, extents);  // update gate
177
    Eigen::array<int, 2> r_offsets{{0, frame_size}};
G
guosheng 已提交
178
    auto r = g.slice(r_offsets, extents);  // reset gate
179
    Eigen::array<int, 2> c_offsets{{0, frame_size * 2}};
G
guosheng 已提交
180 181 182
    auto c = g.slice(c_offsets, extents);  // output candidate

    // backward for unactivated update gate
183
    ActGradCompute(context.Attr<int>("gate_activation"), place, u, u,
G
guosheng 已提交
184
                   d_g.slice(u_offsets, extents), d_h * (c - h_p));
G
guosheng 已提交
185
    // backward for unactivated output candidate
186
    ActGradCompute(context.Attr<int>("activation"), place, c, c,
G
guosheng 已提交
187
                   d_g.slice(c_offsets, extents), d_h * u);
G
guosheng 已提交
188
    // backward for reset_hidden_prev
Y
Yu Yang 已提交
189 190 191 192 193
    auto blas = math::GetBlas<DeviceContext, T>(context);
    blas.GEMM(false, true, batch_size, frame_size, frame_size, 1,
              gate_grad_data + frame_size * 2, frame_size * 3,
              weight_data + frame_size * frame_size * 2, frame_size, 0,
              reset_hidden_prev_grad_data, frame_size);
G
guosheng 已提交
194
    // backward for unactivated reset gate
195 196
    ActGradCompute(context.Attr<int>("gate_activation"), place, r, r,
                   d_g.slice(r_offsets, extents), d_r_h_p * h_p);
197 198 199 200
    // backward for weight
    if (weight_grad) {
      T* weight_grad_data = weight_grad->mutable_data<T>(context.GetPlace());
      // backward for state_weight
Y
Yu Yang 已提交
201 202 203 204
      blas.GEMM(true, false, frame_size, frame_size, batch_size, 1,
                reset_hidden_prev_data, frame_size,
                gate_grad_data + frame_size * 2, frame_size * 3, 0,
                weight_grad_data + frame_size * frame_size * 2, frame_size);
205 206

      // backward for update_gate_weight and reset_gate_weight
Y
Yu Yang 已提交
207 208 209
      blas.GEMM(true, false, frame_size, frame_size * 2, batch_size, 1,
                hidden_prev_data, frame_size, gate_grad_data, frame_size * 3, 0,
                weight_grad_data, frame_size * 2);
210
    }
G
guosheng 已提交
211
    // backward for hidden_prev
212 213 214 215 216
    if (hidden_prev_grad) {
      T* hidden_prev_grad_data =
          hidden_prev_grad->mutable_data<T>(context.GetPlace());
      auto d_h_p = EigenMatrix<T>::From(*hidden_prev_grad);
      d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u);
Y
Yu Yang 已提交
217 218 219
      blas.GEMM(false, true, batch_size, frame_size, frame_size * 2, 1,
                gate_grad_data, frame_size * 3, weight_data, frame_size * 2, 1,
                hidden_prev_grad_data, frame_size);
220
    }
G
guosheng 已提交
221
    // backward for input
222 223 224 225 226
    if (input_grad) {
      input_grad->mutable_data<T>(context.GetPlace());
      auto d_x = EigenMatrix<T>::From(*input_grad);
      d_x.device(place) = d_g;
    }
G
guosheng 已提交
227
    // backward for bias
G
guosheng 已提交
228 229
    if (bias_grad) {
      bias_grad->mutable_data<T>(context.GetPlace());
D
dzhwinter 已提交
230
      auto d_b = EigenVector<T>::Flatten(*bias_grad);
G
guosheng 已提交
231 232
      d_b.device(place) = d_g.sum(Eigen::array<int, 1>({{0}}));
    }
G
guosheng 已提交
233 234 235 236 237
  }
};

}  // namespace operators
}  // namespace paddle