recurrent_op.h 4.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

   Licensed under the Apache License, Version 2.0 (the "License");
   you may not use this file except in compliance with the License.
   You may obtain a copy of the License at

   http://www.apache.org/licenses/LICENSE-2.0

   Unless required by applicable law or agreed to in writing, software
   distributed under the License is distributed on an "AS IS" BASIS,
   WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
   See the License for the specific language governing permissions and
   limitations under the License. */

#pragma once

#include "paddle/framework/operator.h"
18
#include "paddle/operators/rnn/recurrent_op_utils.h"
Y
Yan Chunwei 已提交
19 20 21 22 23

namespace paddle {
namespace operators {

// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
L
liaogang 已提交
24
// TODO(Yan Chunwei):
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31
// 1. No-padding computing for sequences with indifinite length in one batch.
// 2. Hierarchical RNN for sequence with sub-sequence.
// 3. Internal Memory.
// 4. More Complex RNN architecture, such as Gated Feedback RNN.
//    Refer to: https://arxiv.org/pdf/1502.02367.pdf

class RecurrentAlgorithm {
32
 public:
Y
Yi Wang 已提交
33 34
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
35 36 37 38 39 40

  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
41
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
42

43
 protected:
Y
Yan Chunwei 已提交
44 45 46 47 48 49
  /*
   * The step scopes will be stored in the father scope as a variable.
   *
   * NOTE the scopes are reused in both the forward and backward, so just
   * create once and expand its size if more steps need.
   */
Y
Yi Wang 已提交
50
  void CreateScopes(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
51

Y
Yi Wang 已提交
52 53 54 55
  const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
56 57
  }

Y
Yi Wang 已提交
58
  void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
59

60
 private:
Y
Yan Chunwei 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

class RecurrentGradientAlgorithm {
  /**
   * RNN's backward alogorithm.
   *
   * To accelerate the development of RecurrentGradientOp, we decouple RNN's
   * algorithm and `OperatorBase`'s implementation, the former contains the core
   * implementation of a RNN, and will keep stable even if the framework changes
   * a
   * lot, and the latter is a wrapper acts like an dapter for it to make RNN an
   * operator.
   */
76
 public:
Y
Yan Chunwei 已提交
77 78
  void Init(std::unique_ptr<rnn::Argument> arg) { arg_ = std::move(arg); }

Y
Yi Wang 已提交
79 80
  void Run(const framework::Scope& scope,
           const platform::DeviceContext& dev_ctx) const;
Y
Yan Chunwei 已提交
81

Y
Yi Wang 已提交
82 83
  void LinkBootMemoryGradients(framework::Scope* step_scopes,
                               bool infer_shape_mode) const;
Y
Yan Chunwei 已提交
84 85 86 87

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
88
  void InferShape(const framework::Scope& scope) const;
Y
Yan Chunwei 已提交
89

90
 protected:
Y
Yi Wang 已提交
91 92 93 94
  inline const std::vector<framework::Scope*>& GetStepScopes(
      const framework::Scope& scope) const {
    return *scope.FindVar(arg_->step_scopes)
                ->GetMutable<std::vector<framework::Scope*>>();
Y
Yan Chunwei 已提交
95 96
  }

97
 private:
Y
Yan Chunwei 已提交
98 99 100 101
  std::unique_ptr<rnn::Argument> arg_;
  mutable size_t seq_len_;
};

Y
Yi Wang 已提交
102
class RecurrentOp final : public framework::OperatorBase {
103
 public:
Y
Yu Yang 已提交
104 105
  RecurrentOp(const std::string& type, const VarNameMap& inputs,
              const VarNameMap& outputs, const framework::AttributeMap& attrs);
Y
Yan Chunwei 已提交
106
  /**
Y
Yu Yang 已提交
107 108
     * InferShape must be called before Run.
     */
Y
Yi Wang 已提交
109 110 111
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
112

Y
Yi Wang 已提交
113
  void Run(const framework::Scope& scope,
L
liaogang 已提交
114
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
115 116 117 118 119
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

120
 private:
Y
Yan Chunwei 已提交
121 122 123
  RecurrentAlgorithm alg_;
};

Y
Yi Wang 已提交
124
class RecurrentGradientOp final : public framework::OperatorBase {
125
 public:
Y
Yu Yang 已提交
126 127 128
  RecurrentGradientOp(const std::string& type, const VarNameMap& inputs,
                      const VarNameMap& outputs,
                      const framework::AttributeMap& attrs);
Y
Yan Chunwei 已提交
129 130 131 132

  /**
   * InferShape must be called before Run.
   */
Y
Yi Wang 已提交
133 134 135
  void InferShape(const framework::Scope& scope) const override {
    alg_.InferShape(scope);
  }
Y
Yan Chunwei 已提交
136

Y
Yi Wang 已提交
137
  void Run(const framework::Scope& scope,
L
liaogang 已提交
138
           const platform::DeviceContext& dev_ctx) const override {
Y
Yan Chunwei 已提交
139 140 141 142 143
    alg_.Run(scope, dev_ctx);
  }

  static const rnn::ArgumentName kArgName;

144
 private:
Y
Yan Chunwei 已提交
145 146 147 148 149
  RecurrentGradientAlgorithm alg_;
};

}  // namespace operators
}  // namespace paddle