Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
b943874f
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
b943874f
编写于
8月 05, 2017
作者:
Y
Yan Chunwei
提交者:
GitHub
8月 05, 2017
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
move namespace rnn to a directory (#3261)
* move namespace rnn to a directory
上级
03a38b3d
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
254 addition
and
204 deletion
+254
-204
paddle/operators/CMakeLists.txt
paddle/operators/CMakeLists.txt
+2
-1
paddle/operators/recurrent_op.cc
paddle/operators/recurrent_op.cc
+0
-135
paddle/operators/recurrent_op.h
paddle/operators/recurrent_op.h
+1
-68
paddle/operators/recurrent_op_test.cc
paddle/operators/recurrent_op_test.cc
+1
-0
paddle/operators/rnn/recurrent_op_utils.cc
paddle/operators/rnn/recurrent_op_utils.cc
+157
-0
paddle/operators/rnn/recurrent_op_utils.h
paddle/operators/rnn/recurrent_op_utils.h
+93
-0
未找到文件。
paddle/operators/CMakeLists.txt
浏览文件 @
b943874f
...
...
@@ -63,5 +63,6 @@ op_library(sgd_op SRCS sgd_op.cc sgd_op.cu)
op_library
(
fc_op
SRCS fc_op.cc
DEPS mul_op rowwise_add_op sigmoid_op softmax_op net_op
)
op_library
(
recurrent_op SRCS recurrent_op.cc DEPS op_desc tensor op_registry operator net_op
)
op_library
(
recurrent_op SRCS recurrent_op.cc rnn/recurrent_op_utils.cc
DEPS op_desc tensor op_registry operator net_op
)
cc_test
(
recurrent_op_test SRCS recurrent_op_test.cc DEPS recurrent_op gtest mul_op add_op
)
paddle/operators/recurrent_op.cc
浏览文件 @
b943874f
...
...
@@ -25,141 +25,6 @@
namespace
paddle
{
namespace
operators
{
namespace
rnn
{
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
!
inlinks
.
empty
(),
"no in links are provided."
);
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
auto
input_var
=
step_scopes
[
0
]
->
FindVar
(
inlinks
[
i
].
external
);
PADDLE_ENFORCE
(
input_var
!=
nullptr
,
"input link [%s] is not in scope."
,
inlinks
[
i
].
external
);
Tensor
*
input
=
input_var
->
GetMutable
<
Tensor
>
();
framework
::
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE
(
static_cast
<
size_t
>
(
dims
[
0
])
==
seq_len
,
"all the inlinks must have same length"
);
framework
::
DDim
step_dims
=
slice_ddim
(
dims
,
1
,
dims
.
size
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
if
(
!
infer_shape_mode
)
{
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
}
step_input
->
Resize
(
step_dims
);
}
}
}
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
auto
output_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
);
PADDLE_ENFORCE
(
output_var
!=
nullptr
,
"output link [%s] is not in scope."
,
outlinks
[
i
].
external
);
Tensor
*
output
=
output_var
->
GetMutable
<
Tensor
>
();
if
(
infer_shape_mode
)
{
framework
::
DDim
step_dims
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
framework
::
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(
output
->
Slice
<
float
>
(
j
,
j
+
1
))
.
CopyFrom
<
float
>
(
*
step_output
,
platform
::
CPUPlace
());
}
}
}
}
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
scopes
,
const
std
::
vector
<
rnn
::
MemoryAttr
>&
memories
,
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
step_id
<
scopes
.
size
(),
"step [%d] is out of range of step scopes' size [%d]"
,
step_id
,
scopes
.
size
());
PADDLE_ENFORCE
(
static_cast
<
int
>
(
step_id
)
+
offset
>=
0
,
"offset [%d] must be large than -[%d]"
,
offset
,
step_id
);
PADDLE_ENFORCE
(
step_id
+
offset
<
scopes
.
size
(),
"offset [%d] is out of range, it must be less than (%d - %d)"
,
offset
,
scopes
.
size
(),
step_id
);
auto
scope
=
scopes
[
step_id
];
auto
linked_scope
=
scopes
[
step_id
+
offset
];
for
(
auto
&
attr
:
memories
)
{
auto
mem
=
scope
->
FindVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
auto
linked_mem
=
linked_scope
->
FindVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
if
(
infer_shape_mode
)
{
mem
->
Resize
(
linked_mem
->
dims
());
}
else
{
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
}
}
}
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
OperatorBase
&
op
)
{
arg
->
step_net
=
op
.
Input
(
name
.
step_net
);
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
auto
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
auto
inlink_alias
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
inlink_alias
);
PADDLE_ENFORCE
(
inlinks
.
size
()
==
inlink_alias
.
size
(),
"the size of inlinks and inlink_alias don't match:%d,%d"
,
inlinks
.
size
(),
inlink_alias
.
size
());
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
rnn
::
Link
link
;
link
.
external
=
inlinks
[
i
];
link
.
internal
=
inlink_alias
[
i
];
(
arg
->
inlinks
).
push_back
(
link
);
}
auto
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
outlink_alias
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
outlink_alias
);
PADDLE_ENFORCE
(
outlinks
.
size
()
==
outlink_alias
.
size
(),
"the size of outlinks and outlink_alias don't match:%d,%d"
,
outlinks
.
size
(),
outlink_alias
.
size
());
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
++
i
)
{
rnn
::
Link
link
;
link
.
external
=
outlinks
[
i
];
link
.
internal
=
outlink_alias
[
i
];
(
arg
->
outlinks
).
push_back
(
link
);
}
auto
boot_memories
=
op
.
Inputs
(
name
.
boot_memories
);
// attributes
auto
memories
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
);
auto
pre_memories
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
);
PADDLE_ENFORCE
(
memories
.
size
()
==
boot_memories
.
size
(),
"the size of memories, boot_memories don't match:%d,%d"
,
memories
.
size
(),
boot_memories
.
size
());
PADDLE_ENFORCE
(
pre_memories
.
size
()
==
boot_memories
.
size
(),
"the size of pre_memories, boot_memories don't match:%d,%d"
,
pre_memories
.
size
(),
boot_memories
.
size
());
PADDLE_ENFORCE
(
memories
.
size
()
>
0
,
"more than 1 memories should be set"
);
for
(
size_t
i
=
0
;
i
<
memories
.
size
();
++
i
)
{
rnn
::
MemoryAttr
mem_attr
;
mem_attr
.
var
=
memories
[
i
];
mem_attr
.
pre_var
=
pre_memories
[
i
];
mem_attr
.
boot_var
=
boot_memories
[
i
];
(
arg
->
memories
).
push_back
(
mem_attr
);
}
}
}
// namespace rnn
void
RecurrentAlgorithm
::
InferShape
(
const
Scope
&
scope
)
const
{
seq_len_
=
scope
.
FindVar
((
arg_
->
inlinks
[
0
]).
external
)
->
GetMutable
<
Tensor
>
()
...
...
paddle/operators/recurrent_op.h
浏览文件 @
b943874f
...
...
@@ -15,78 +15,11 @@
#pragma once
#include "paddle/framework/operator.h"
#include "paddle/operators/rnn/recurrent_op_utils.h"
namespace
paddle
{
namespace
operators
{
namespace
rnn
{
/**
* Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
*
* Memory attributes cached by this op, dims will be infered from
* boot memories in father scope. Other attributes are copied from Op's proto
* attributes.
*/
struct
MemoryAttr
{
// name of current state variable
std
::
string
var
;
// name of previous step's state variable
std
::
string
pre_var
;
// name of the variables to init this memory (same role of `boot_layer` in
// PaddlePaddle), which is store in father's scope.
std
::
string
boot_var
;
};
struct
Link
{
// input or output links name.
std
::
string
internal
;
// alias to avoid duplicate keys in scopes.
std
::
string
external
;
};
struct
Argument
{
std
::
string
step_net
;
std
::
string
step_scopes
;
std
::
vector
<
Link
>
inlinks
;
std
::
vector
<
Link
>
outlinks
;
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
};
struct
ArgumentName
{
std
::
string
step_net
;
std
::
string
step_scopes
;
std
::
string
inlinks
;
std
::
string
outlinks
;
std
::
string
inlink_alias
;
// the alias of inlinks in step net.
std
::
string
outlink_alias
;
// the alias of outlinks in step net.
std
::
string
memories
;
// the memory name
std
::
string
pre_memories
;
// the previous memory name
std
::
string
boot_memories
;
// the boot memory name
};
/**
* Prepare inputs for each step net.
*/
void
SegmentInputs
(
const
std
::
vector
<
framework
::
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
/**
* Process outputs of step nets and merge to variables.
*/
void
ConcatOutputs
(
const
std
::
vector
<
framework
::
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
void
LinkMemories
(
const
std
::
vector
<
framework
::
Scope
*>&
step_scopes
,
const
std
::
vector
<
MemoryAttr
>&
memories
,
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
);
};
// namespace rnn
// The sequence format in RecurrentOp is Tensor<seq_len, batch_size, dim> now.
// TODO(Yan Chunwei):
// 1. No-padding computing for sequences with indifinite length in one batch.
...
...
paddle/operators/recurrent_op_test.cc
浏览文件 @
b943874f
...
...
@@ -391,3 +391,4 @@ TEST(RecurrentOp, LinkMemories) {
USE_OP
(
add_two
);
USE_OP
(
mul
);
USE_OP_WITHOUT_KERNEL
(
recurrent_op
);
paddle/operators/rnn/recurrent_op_utils.cc
0 → 100644
浏览文件 @
b943874f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/rnn/recurrent_op_utils.h"
namespace
paddle
{
namespace
operators
{
namespace
rnn
{
namespace
fmw
=
paddle
::
framework
;
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
!
inlinks
.
empty
(),
"no in links are provided."
);
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
auto
input_var
=
step_scopes
[
0
]
->
FindVar
(
inlinks
[
i
].
external
);
PADDLE_ENFORCE
(
input_var
!=
nullptr
,
"input link [%s] is not in scope."
,
inlinks
[
i
].
external
);
Tensor
*
input
=
input_var
->
GetMutable
<
Tensor
>
();
fmw
::
DDim
dims
=
input
->
dims
();
PADDLE_ENFORCE
(
static_cast
<
size_t
>
(
dims
[
0
])
==
seq_len
,
"all the inlinks must have same length"
);
fmw
::
DDim
step_dims
=
slice_ddim
(
dims
,
1
,
dims
.
size
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_input
=
step_scopes
[
j
]
->
NewVar
(
inlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
if
(
!
infer_shape_mode
)
{
*
step_input
=
input
->
Slice
<
float
>
(
j
,
j
+
1
);
}
step_input
->
Resize
(
step_dims
);
}
}
}
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
)
{
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
i
++
)
{
auto
output_var
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
external
);
PADDLE_ENFORCE
(
output_var
!=
nullptr
,
"output link [%s] is not in scope."
,
outlinks
[
i
].
external
);
Tensor
*
output
=
output_var
->
GetMutable
<
Tensor
>
();
if
(
infer_shape_mode
)
{
fmw
::
DDim
step_dims
=
step_scopes
[
0
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
()
->
dims
();
std
::
vector
<
int
>
dims_vec
=
vectorize
(
step_dims
);
dims_vec
.
insert
(
dims_vec
.
begin
(),
seq_len
);
output
->
Resize
(
fmw
::
make_ddim
(
dims_vec
));
}
else
{
output
->
mutable_data
<
float
>
(
platform
::
CPUPlace
());
for
(
size_t
j
=
0
;
j
<
seq_len
;
j
++
)
{
Tensor
*
step_output
=
step_scopes
[
j
]
->
FindVar
(
outlinks
[
i
].
internal
)
->
GetMutable
<
Tensor
>
();
// TODO(luotao02) data type and platform::DeviceContext() should set
// correctly
(
output
->
Slice
<
float
>
(
j
,
j
+
1
))
.
CopyFrom
<
float
>
(
*
step_output
,
platform
::
CPUPlace
());
}
}
}
}
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
scopes
,
const
std
::
vector
<
rnn
::
MemoryAttr
>&
memories
,
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
)
{
PADDLE_ENFORCE
(
step_id
<
scopes
.
size
(),
"step [%d] is out of range of step scopes' size [%d]"
,
step_id
,
scopes
.
size
());
PADDLE_ENFORCE
(
static_cast
<
int
>
(
step_id
)
+
offset
>=
0
,
"offset [%d] must be large than -[%d]"
,
offset
,
step_id
);
PADDLE_ENFORCE
(
step_id
+
offset
<
scopes
.
size
(),
"offset [%d] is out of range, it must be less than (%d - %d)"
,
offset
,
scopes
.
size
(),
step_id
);
auto
scope
=
scopes
[
step_id
];
auto
linked_scope
=
scopes
[
step_id
+
offset
];
for
(
auto
&
attr
:
memories
)
{
auto
mem
=
scope
->
FindVar
(
attr
.
pre_var
)
->
GetMutable
<
Tensor
>
();
auto
linked_mem
=
linked_scope
->
FindVar
(
attr
.
var
)
->
GetMutable
<
Tensor
>
();
if
(
infer_shape_mode
)
{
mem
->
Resize
(
linked_mem
->
dims
());
}
else
{
mem
->
ShareDataWith
<
float
>
(
*
linked_mem
);
}
}
}
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
OperatorBase
&
op
)
{
arg
->
step_net
=
op
.
Input
(
name
.
step_net
);
arg
->
step_scopes
=
op
.
Output
(
name
.
step_scopes
);
auto
inlinks
=
op
.
Inputs
(
name
.
inlinks
);
auto
inlink_alias
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
inlink_alias
);
PADDLE_ENFORCE
(
inlinks
.
size
()
==
inlink_alias
.
size
(),
"the size of inlinks and inlink_alias don't match:%d,%d"
,
inlinks
.
size
(),
inlink_alias
.
size
());
for
(
size_t
i
=
0
;
i
<
inlinks
.
size
();
++
i
)
{
rnn
::
Link
link
;
link
.
external
=
inlinks
[
i
];
link
.
internal
=
inlink_alias
[
i
];
(
arg
->
inlinks
).
push_back
(
link
);
}
auto
outlinks
=
op
.
Outputs
(
name
.
outlinks
);
auto
outlink_alias
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
outlink_alias
);
PADDLE_ENFORCE
(
outlinks
.
size
()
==
outlink_alias
.
size
(),
"the size of outlinks and outlink_alias don't match:%d,%d"
,
outlinks
.
size
(),
outlink_alias
.
size
());
for
(
size_t
i
=
0
;
i
<
outlinks
.
size
();
++
i
)
{
rnn
::
Link
link
;
link
.
external
=
outlinks
[
i
];
link
.
internal
=
outlink_alias
[
i
];
(
arg
->
outlinks
).
push_back
(
link
);
}
auto
boot_memories
=
op
.
Inputs
(
name
.
boot_memories
);
// attributes
auto
memories
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
memories
);
auto
pre_memories
=
op
.
GetAttr
<
std
::
vector
<
std
::
string
>>
(
name
.
pre_memories
);
PADDLE_ENFORCE
(
memories
.
size
()
==
boot_memories
.
size
(),
"the size of memories, boot_memories don't match:%d,%d"
,
memories
.
size
(),
boot_memories
.
size
());
PADDLE_ENFORCE
(
pre_memories
.
size
()
==
boot_memories
.
size
(),
"the size of pre_memories, boot_memories don't match:%d,%d"
,
pre_memories
.
size
(),
boot_memories
.
size
());
PADDLE_ENFORCE
(
memories
.
size
()
>
0
,
"more than 1 memories should be set"
);
for
(
size_t
i
=
0
;
i
<
memories
.
size
();
++
i
)
{
rnn
::
MemoryAttr
mem_attr
;
mem_attr
.
var
=
memories
[
i
];
mem_attr
.
pre_var
=
pre_memories
[
i
];
mem_attr
.
boot_var
=
boot_memories
[
i
];
(
arg
->
memories
).
push_back
(
mem_attr
);
}
}
}
// namespace rnn
}
// namespace operators
}
// namespace paddle
paddle/operators/rnn/recurrent_op_utils.h
0 → 100644
浏览文件 @
b943874f
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/framework/operator.h"
#include "paddle/operators/type_alias.h"
namespace
paddle
{
namespace
operators
{
namespace
rnn
{
/**
* Memory of a RNN (same as the role of `Momory` in PaddlePaddle).
*
* Memory attributes cached by this op, dims will be infered from
* boot memories in father scope. Other attributes are copied from Op's proto
* attributes.
*/
struct
MemoryAttr
{
// name of current state variable
std
::
string
var
;
// name of previous step's state variable
std
::
string
pre_var
;
// name of the variables to init this memory (same role of `boot_layer` in
// PaddlePaddle), which is store in father's scope.
std
::
string
boot_var
;
};
struct
Link
{
// input or output links name.
std
::
string
internal
;
// alias to avoid duplicate keys in scopes.
std
::
string
external
;
};
struct
Argument
{
std
::
string
step_net
;
std
::
string
step_scopes
;
std
::
vector
<
Link
>
inlinks
;
std
::
vector
<
Link
>
outlinks
;
std
::
vector
<
rnn
::
MemoryAttr
>
memories
;
};
struct
ArgumentName
{
std
::
string
step_net
;
std
::
string
step_scopes
;
std
::
string
inlinks
;
std
::
string
outlinks
;
std
::
string
inlink_alias
;
// the alias of inlinks in step net.
std
::
string
outlink_alias
;
// the alias of outlinks in step net.
std
::
string
memories
;
// the memory name
std
::
string
pre_memories
;
// the previous memory name
std
::
string
boot_memories
;
// the boot memory name
};
/**
* Prepare inputs for each step net.
*/
void
SegmentInputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
inlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
/**
* Process outputs of step nets and merge to variables.
*/
void
ConcatOutputs
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
Link
>&
outlinks
,
const
size_t
seq_len
,
bool
infer_shape_mode
);
void
LinkMemories
(
const
std
::
vector
<
Scope
*>&
step_scopes
,
const
std
::
vector
<
MemoryAttr
>&
memories
,
const
size_t
step_id
,
const
int
offset
,
bool
infer_shape_mode
);
void
InitArgument
(
const
ArgumentName
&
name
,
Argument
*
arg
,
const
OperatorBase
&
op
);
}
// namespace rnn
}
// namespace operators
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录