tensor.cc 15.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
#include "paddle/phi/api/include/tensor.h"
16 17 18 19 20 21

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
22

23
#include "paddle/phi/api/include/context_pool.h"
24
#include "paddle/phi/api/lib/utils/allocator.h"
25
#include "paddle/phi/backends/gpu/gpu_context.h"
26 27
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
28
#include "paddle/phi/core/dense_tensor.h"
29
#include "paddle/phi/core/enforce.h"
30
#include "paddle/phi/core/selected_rows.h"
31 32
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
J
Jack Zhou 已提交
33
#include "paddle/phi/core/string_tensor.h"
34 35 36
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
37 38 39 40 41 42 43 44

namespace paddle {
namespace experimental {

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

45
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
46
    : impl_(std::move(tensor_impl)) {
47 48 49
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
50 51
}

52
Tensor::Tensor(const Place &place) {
53 54 55 56 57 58 59 60
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place) constructor is deprecated since version "
         "2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place`, and datatype, shape, layout, etc. is also "
         "required.";
61
  DefaultAllocator alloc(place);
62 63 64 65 66 67 68
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
69 70 71 72 73 74 75 76
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place, shape) constructor is deprecated since "
         "version 2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place` and `shape`, and datatype, layout, etc. is also "
         "required.";
77
  DefaultAllocator alloc(place);
78 79 80 81 82 83
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
84

85
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
86 87
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
88

89 90 91 92 93 94
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

95
const phi::DDim &Tensor::dims() const { return impl_->dims(); }
96 97

std::vector<int64_t> Tensor::shape() const {
98 99
  auto dims = impl_->dims();
  return phi::vectorize<int64_t>(dims);
100 101 102
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
103 104 105 106 107 108 109 110 111
  LOG_FIRST_N(WARNING, 1)
      << "The function of resetting the shape of the uninitialized "
         "Tensor of the `reshape` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`paddle::empty/full` method to create a new Tensor "
         "instead. "
         "reason: `reshape` means changing the tensor shape without "
         "touching underlying data, this requires the total size of "
         "the tensor to remain constant.";
C
Chen Weihang 已提交
112
  if (is_dense_tensor()) {
113
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
114
  } else {
115
    PADDLE_THROW(phi::errors::Unimplemented(
116 117
        "Only support reshape operation on DenseTensor now."));
  }
118 119
}

120
DataType Tensor::dtype() const { return impl_->dtype(); }
121

122
DataType Tensor::type() const { return impl_->dtype(); }
123 124 125

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
126
bool Tensor::is_dense_tensor() const {
127
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
128
}
129
bool Tensor::is_selected_rows() const {
130
  return phi::SelectedRows::classof(impl_.get());
131
}
132 133 134 135 136 137
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
J
Jack Zhou 已提交
138 139 140
bool Tensor::is_string_tensor() const {
  return phi::StringTensor::classof(impl_.get());
}
141 142
/* Part 3: Device and Backend methods */

143
const Place &Tensor::place() const {
144 145 146 147 148 149
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
          "Null when calling Tensor::place()."));
  return impl_->place();
150 151
}

C
Chen Weihang 已提交
152
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
153

C
Chen Weihang 已提交
154
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
155

156
bool Tensor::is_gpu_pinned() const {
C
Chen Weihang 已提交
157
  return paddle::platform::is_cuda_pinned_place(place());
158 159
}

C
Chen Weihang 已提交
160 161
bool Tensor::is_xpu() const { return paddle::platform::is_xpu_place(place()); }

162 163 164 165
bool Tensor::is_custom_device() const {
  return paddle::platform::is_custom_place(place());
}

166 167 168 169
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
170 171 172 173 174 175 176 177 178 179
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the place, datatype, and data layout of tensor may be in "
         "an illegal state.";
C
Chen Weihang 已提交
180
  if (is_dense_tensor()) {
181 182
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
183 184 185 186
  }
  return nullptr;
}

187
template PADDLE_API bool *Tensor::mutable_data<bool>();
188
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
189
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
190
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
191 192 193 194 195 196 197 198 199 200 201
template PADDLE_API uint16_t *Tensor::mutable_data<uint16_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint32_t *Tensor::mutable_data<uint32_t>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API uint64_t *Tensor::mutable_data<uint64_t>();
template PADDLE_API phi::dtype::bfloat16 *
Tensor::mutable_data<phi::dtype::bfloat16>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
202 203 204 205
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
206 207

template <typename T>
208
T *Tensor::mutable_data(const Place &place) {
209 210 211 212 213 214 215 216 217 218
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the datatype, and data layout of tensor may be in "
         "an illegal state.";
219
  if (is_dense_tensor()) {
220
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
221 222
  }
  return nullptr;
223 224
}

225
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
226
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
227
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
228
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
229 230 231 232 233 234
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
235
template PADDLE_API phi::dtype::complex<float>
236
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
237
template PADDLE_API phi::dtype::complex<double>
238
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
239 240 241

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
242
  if (is_dense_tensor()) {
243 244 245
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
246 247 248 249
  }
  return nullptr;
}

250
template PADDLE_API const bool *Tensor::data<bool>() const;
251
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
252
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
253
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
254 255 256 257 258 259 260 261 262 263 264
template PADDLE_API const uint16_t *Tensor::data<uint16_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint32_t *Tensor::data<uint32_t>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const uint64_t *Tensor::data<uint64_t>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
265 266 267 268
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
269 270 271

template <typename T>
T *Tensor::data() {
272
  if (is_dense_tensor()) {
273 274 275
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
276 277 278
        ->mutable_value()
        ->data<T>();
  }
279 280 281
  return nullptr;
}

282
template PADDLE_API bool *Tensor::data<bool>();
283
template PADDLE_API int8_t *Tensor::data<int8_t>();
284
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
285
template PADDLE_API int16_t *Tensor::data<int16_t>();
286 287 288 289 290 291 292 293 294
template PADDLE_API uint16_t *Tensor::data<uint16_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint32_t *Tensor::data<uint32_t>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API uint64_t *Tensor::data<uint64_t>();
template PADDLE_API phi::dtype::bfloat16 *Tensor::data<phi::dtype::bfloat16>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
295 296 297 298
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
299

300
// TODO(chenweihang): replace slice impl by API
301
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
302
  if (is_dense_tensor()) {
303 304
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
305
            *(static_cast<phi::DenseTensor *>(impl_.get())),
306 307 308
            begin_idx,
            end_idx))));
  } else {
309
    PADDLE_THROW(phi::errors::Unimplemented(
310
        "Only support slice operation on DenseTensor now."));
311
  }
312 313
}

314
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
315

316
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
317 318 319
  impl_ = impl;
}

320 321 322 323
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

324 325
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
326
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
327 328
  auto *gpu_context = DeviceContextPool::Instance().Get<AllocationType::GPU>(
      GPUPlace(device_id));
329
  return gpu_context->stream();
330 331 332
}
#endif

333
/* Part 5: Status utils methods */
334 335 336

bool Tensor::defined() const { return impl_ != nullptr; }

337
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
338 339

bool Tensor::is_initialized() const {
340 341 342 343
  LOG_FIRST_N(WARNING, 1)
      << "The `is_initialized` method is deprecated since version "
         "2.3, and will be removed in version 2.4! "
         "Please use `initialized` method instead.";
344
  return defined() && impl_->initialized();
345 346
}

347 348 349 350 351
void Tensor::reset() {
  impl_.reset();
  autograd_meta_.reset();
  name_ = "";
}
352

353
/* Part 6: Operator overloading */
354 355 356 357

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
358
  name_ = x.name_;
359 360 361 362 363 364
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
365
  name_ = std::move(x.name_);
366 367 368 369 370 371 372
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

373 374 375 376 377
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

378 379 380 381 382
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

383 384 385
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
386
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
387 388 389 390 391 392 393 394 395 396
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
397
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
398 399
    return inplace_version_counter.CurrentVersion();
  } else {
400 401
    LOG_FIRST_N(WARNING, 1)
        << "current_inplace_version is only supported on DenseTensor now.";
402 403 404 405
  }
  return 0;
}

406 407 408 409
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
410
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
411 412 413 414 415
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

416 417
}  // namespace experimental
}  // namespace paddle