tensor.cc 14.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

15
// clang-format off
16
#include "paddle/phi/api/include/tensor.h"
17 18 19 20 21 22

#include <memory>
#include <utility>
#include <vector>

#include "glog/logging.h"
23

24
#include "paddle/phi/api/include/context_pool.h"
25
#include "paddle/phi/api/lib/utils/allocator.h"
26
#include "paddle/phi/backends/gpu/gpu_context.h"
27 28
#include "paddle/phi/backends/gpu/gpu_info.h"
#include "paddle/phi/core/ddim.h"
29
#include "paddle/phi/core/dense_tensor.h"
30
#include "paddle/phi/core/enforce.h"
31
#include "paddle/phi/core/selected_rows.h"
32 33
#include "paddle/phi/core/sparse_coo_tensor.h"
#include "paddle/phi/core/sparse_csr_tensor.h"
J
Jack Zhou 已提交
34
#include "paddle/phi/core/string_tensor.h"
35 36 37
#include "paddle/phi/core/tensor_base.h"
#include "paddle/phi/core/tensor_meta.h"
#include "paddle/phi/core/tensor_utils.h"
38
// clang-format off
39 40 41 42 43 44 45 46

namespace paddle {
namespace experimental {

/////// Tensor Methods ////////

/* Part 1: Construction and destruction methods */

47
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl)
48
    : impl_(std::move(tensor_impl)) {
49 50 51
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::InvalidArgument("TensorImpl with nullptr is not supported"));
52 53
}

54
Tensor::Tensor(const Place &place) {
55 56 57 58 59 60 61 62
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place) constructor is deprecated since version "
         "2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place`, and datatype, shape, layout, etc. is also "
         "required.";
63
  DefaultAllocator alloc(place);
64 65 66 67 68 69 70
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(
          phi::DataType::FLOAT32, phi::make_ddim({}), phi::DataLayout::NCHW))));
}

Tensor::Tensor(const Place &place, const std::vector<int64_t> &shape) {
71 72 73 74 75 76 77 78
  LOG_FIRST_N(WARNING, 1)
      << "The Tensor(place, shape) constructor is deprecated since "
         "version 2.3, and will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor instead. "
         "Reason: A legal tensor cannot be constructed only based on "
         "the `place` and `shape`, and datatype, layout, etc. is also "
         "required.";
79
  DefaultAllocator alloc(place);
80 81 82 83 84 85
  impl_ = std::move(std::make_shared<phi::DenseTensor>(
      &alloc,
      std::move(phi::DenseTensorMeta(phi::DataType::FLOAT32,
                                     phi::make_ddim({shape}),
                                     phi::DataLayout::NCHW))));
}
86

87
Tensor::Tensor(std::shared_ptr<phi::TensorBase> tensor_impl,
88 89
               const std::string &name)
    : impl_(std::move(tensor_impl)), name_(std::move(name)) {}
90

91 92 93 94 95 96
/* Part 2: Dimension, DataType and DataLayout methods */

int64_t Tensor::numel() const { return impl_->numel(); }

int64_t Tensor::size() const { return impl_->numel(); }

97
const phi::DDim &Tensor::dims() const { return impl_->dims(); }
98 99

std::vector<int64_t> Tensor::shape() const {
100 101
  auto dims = impl_->dims();
  return phi::vectorize<int64_t>(dims);
102 103 104
}

void Tensor::reshape(const std::vector<int64_t> &shape) {
105 106 107 108 109 110 111 112 113
  LOG_FIRST_N(WARNING, 1)
      << "The function of resetting the shape of the uninitialized "
         "Tensor of the `reshape` method is deprecated since version "
         "2.3, and will be removed in version 2.4, please use "
         "`paddle::empty/full` method to create a new Tensor "
         "instead. "
         "reason: `reshape` means changing the tensor shape without "
         "touching underlying data, this requires the total size of "
         "the tensor to remain constant.";
C
Chen Weihang 已提交
114
  if (is_dense_tensor()) {
115
    static_cast<phi::DenseTensor *>(impl_.get())->Resize(phi::make_ddim(shape));
116
  } else {
117
    PADDLE_THROW(phi::errors::Unimplemented(
118 119
        "Only support reshape operation on DenseTensor now."));
  }
120 121
}

122
DataType Tensor::dtype() const { return impl_->dtype(); }
123

124
DataType Tensor::type() const { return impl_->dtype(); }
125 126 127

DataLayout Tensor::layout() const { return impl_->layout(); }

C
Chen Weihang 已提交
128
bool Tensor::is_dense_tensor() const {
129
  return phi::DenseTensor::classof(impl_.get());
C
Chen Weihang 已提交
130
}
131
bool Tensor::is_selected_rows() const {
132
  return phi::SelectedRows::classof(impl_.get());
133
}
134 135 136 137 138 139
bool Tensor::is_sparse_coo_tensor() const {
  return phi::SparseCooTensor::classof(impl_.get());
}
bool Tensor::is_sparse_csr_tensor() const {
  return phi::SparseCsrTensor::classof(impl_.get());
}
J
Jack Zhou 已提交
140 141 142
bool Tensor::is_string_tensor() const {
  return phi::StringTensor::classof(impl_.get());
}
143 144
/* Part 3: Device and Backend methods */

145
const Place &Tensor::place() const {
146 147 148 149 150 151
  PADDLE_ENFORCE_NOT_NULL(
      impl_,
      phi::errors::PermissionDenied(
          "Null pointer error, the impl_ of Tensor should not be "
          "Null when calling Tensor::place()."));
  return impl_->place();
152 153
}

C
Chen Weihang 已提交
154
bool Tensor::is_cpu() const { return paddle::platform::is_cpu_place(place()); }
155

C
Chen Weihang 已提交
156
bool Tensor::is_gpu() const { return paddle::platform::is_gpu_place(place()); }
157

158
bool Tensor::is_gpu_pinned() const {
C
Chen Weihang 已提交
159
  return paddle::platform::is_cuda_pinned_place(place());
160 161
}

162 163 164 165
bool Tensor::is_custom_device() const {
  return paddle::platform::is_custom_place(place());
}

166 167 168 169
/* Part 4: Data Access methods */

template <typename T>
T *Tensor::mutable_data() {
170 171 172 173 174 175 176 177 178 179
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the place, datatype, and data layout of tensor may be in "
         "an illegal state.";
C
Chen Weihang 已提交
180
  if (is_dense_tensor()) {
181 182
    return static_cast<phi::DenseTensor *>(impl_.get())
        ->mutable_data<T>(place());
183 184 185 186
  }
  return nullptr;
}

187 188 189 190 191 192 193 194
template PADDLE_API float *Tensor::mutable_data<float>();
template PADDLE_API double *Tensor::mutable_data<double>();
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>();
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>();
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>();
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>();
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>();
template PADDLE_API bool *Tensor::mutable_data<bool>();
195 196 197 198 199 200
template PADDLE_API phi::dtype::complex<float>
    *Tensor::mutable_data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::mutable_data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *
Tensor::mutable_data<phi::dtype::float16>();
201 202

template <typename T>
203
T *Tensor::mutable_data(const Place &place) {
204 205 206 207 208 209 210 211 212 213
  LOG_FIRST_N(WARNING, 1)
      << "Allocating memory through `mutable_data` method is "
         "deprecated since version 2.3, and `mutable_data` method "
         "will be removed in version 2.4! Please use "
         "`paddle::empty/full` method to create a new "
         "Tensor with allocated memory, and use data<T>() method "
         "to get the memory pointer of tensor instead. "
         "Reason: When calling `mutable_data` to allocate memory, "
         "the datatype, and data layout of tensor may be in "
         "an illegal state.";
214
  if (is_dense_tensor()) {
215
    return static_cast<phi::DenseTensor *>(impl_.get())->mutable_data<T>(place);
216 217
  }
  return nullptr;
218 219
}

220 221 222 223 224 225 226 227
template PADDLE_API float *Tensor::mutable_data<float>(const Place &place);
template PADDLE_API double *Tensor::mutable_data<double>(const Place &place);
template PADDLE_API int64_t *Tensor::mutable_data<int64_t>(const Place &place);
template PADDLE_API int32_t *Tensor::mutable_data<int32_t>(const Place &place);
template PADDLE_API uint8_t *Tensor::mutable_data<uint8_t>(const Place &place);
template PADDLE_API int8_t *Tensor::mutable_data<int8_t>(const Place &place);
template PADDLE_API int16_t *Tensor::mutable_data<int16_t>(const Place &place);
template PADDLE_API bool *Tensor::mutable_data<bool>(const Place &place);
228
template PADDLE_API phi::dtype::complex<float>
229
    *Tensor::mutable_data<phi::dtype::complex<float>>(const Place &place);
230
template PADDLE_API phi::dtype::complex<double>
231
    *Tensor::mutable_data<phi::dtype::complex<double>>(const Place &place);
232
template PADDLE_API phi::dtype::float16 *
233
Tensor::mutable_data<phi::dtype::float16>(const Place &place);
234 235 236

template <typename T>
const T *Tensor::data() const {
C
Chen Weihang 已提交
237
  if (is_dense_tensor()) {
238 239 240
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())->value().data<T>();
241 242 243 244
  }
  return nullptr;
}

245 246 247 248 249 250 251 252
template PADDLE_API const float *Tensor::data<float>() const;
template PADDLE_API const double *Tensor::data<double>() const;
template PADDLE_API const int64_t *Tensor::data<int64_t>() const;
template PADDLE_API const int32_t *Tensor::data<int32_t>() const;
template PADDLE_API const uint8_t *Tensor::data<uint8_t>() const;
template PADDLE_API const int8_t *Tensor::data<int8_t>() const;
template PADDLE_API const int16_t *Tensor::data<int16_t>() const;
template PADDLE_API const bool *Tensor::data<bool>() const;
253 254 255 256 257 258 259 260
template PADDLE_API const phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>() const;
template PADDLE_API const phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>() const;
template PADDLE_API const phi::dtype::float16 *
Tensor::data<phi::dtype::float16>() const;
template PADDLE_API const phi::dtype::bfloat16 *
Tensor::data<phi::dtype::bfloat16>() const;
261 262 263

template <typename T>
T *Tensor::data() {
264
  if (is_dense_tensor()) {
265 266 267
    return static_cast<phi::DenseTensor *>(impl_.get())->data<T>();
  } else if (is_selected_rows()) {
    return static_cast<phi::SelectedRows *>(impl_.get())
268 269 270
        ->mutable_value()
        ->data<T>();
  }
271 272 273
  return nullptr;
}

274 275 276 277 278 279 280 281
template PADDLE_API float *Tensor::data<float>();
template PADDLE_API double *Tensor::data<double>();
template PADDLE_API int64_t *Tensor::data<int64_t>();
template PADDLE_API int32_t *Tensor::data<int32_t>();
template PADDLE_API uint8_t *Tensor::data<uint8_t>();
template PADDLE_API int8_t *Tensor::data<int8_t>();
template PADDLE_API int16_t *Tensor::data<int16_t>();
template PADDLE_API bool *Tensor::data<bool>();
282 283 284 285 286
template PADDLE_API phi::dtype::complex<float>
    *Tensor::data<phi::dtype::complex<float>>();
template PADDLE_API phi::dtype::complex<double>
    *Tensor::data<phi::dtype::complex<double>>();
template PADDLE_API phi::dtype::float16 *Tensor::data<phi::dtype::float16>();
287

288
// TODO(chenweihang): replace slice impl by API
289
Tensor Tensor::slice(int64_t begin_idx, int64_t end_idx) const {
C
Chen Weihang 已提交
290
  if (is_dense_tensor()) {
291 292
    return Tensor(std::make_shared<phi::DenseTensor>(
        std::move(phi::DenseTensorUtils::Slice(
293
            *(static_cast<phi::DenseTensor *>(impl_.get())),
294 295 296
            begin_idx,
            end_idx))));
  } else {
297
    PADDLE_THROW(phi::errors::Unimplemented(
298
        "Only support slice operation on DenseTensor now."));
299
  }
300 301
}

302
const std::shared_ptr<phi::TensorBase> &Tensor::impl() const { return impl_; }
303

304
void Tensor::set_impl(const std::shared_ptr<phi::TensorBase> &impl) {
305 306 307
  impl_ = impl;
}

308 309 310 311
void Tensor::set_impl(std::shared_ptr<phi::TensorBase> &&impl) {
  impl_ = std::move(impl);
}

312 313
#if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
gpuStream_t Tensor::stream() const {
314 315 316 317
  int device_id = phi::backends::gpu::GetCurrentDeviceId();
  auto* gpu_context = DeviceContextPool::Instance()
    .Get<AllocationType::GPU>(GPUPlace(device_id));
  return gpu_context->stream();
318 319 320
}
#endif

321
/* Part 5: Status utils methods */
322 323 324

bool Tensor::defined() const { return impl_ != nullptr; }

325
bool Tensor::initialized() const { return defined() && impl_->initialized(); }
326 327

bool Tensor::is_initialized() const {
328 329 330 331
  LOG_FIRST_N(WARNING, 1)
      << "The `is_initialized` method is deprecated since version "
         "2.3, and will be removed in version 2.4! "
         "Please use `initialized` method instead.";
332
  return defined() && impl_->initialized();
333 334
}

335 336 337 338 339
void Tensor::reset() {
  impl_.reset();
  autograd_meta_.reset();
  name_ = "";
}
340

341
/* Part 6: Operator overloading */
342 343 344 345

Tensor &Tensor::operator=(const Tensor &x) & {
  impl_ = x.impl_;
  autograd_meta_ = x.autograd_meta_;
346
  name_ = x.name_;
347 348 349 350 351 352
  return *this;
}

Tensor &Tensor::operator=(Tensor &&x) & {
  impl_ = std::move(x.impl_);
  autograd_meta_ = std::move(x.autograd_meta_);
353
  name_ = std::move(x.name_);
354 355 356 357 358 359 360
  return *this;
}

AbstractAutogradMeta *Tensor::get_autograd_meta() const {
  return autograd_meta_.get();
}

361 362 363 364 365
const std::shared_ptr<AbstractAutogradMeta> &Tensor::mutable_autograd_meta()
    const {
  return autograd_meta_;
}

366 367 368 369 370
void Tensor::set_autograd_meta(
    std::shared_ptr<AbstractAutogradMeta> autograd_meta) {
  autograd_meta_ = std::move(autograd_meta);
}

371 372 373
void Tensor::bump_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
374
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
375 376 377 378 379 380 381 382 383 384
    inplace_version_counter.Bump();
  } else {
    PADDLE_THROW(phi::errors::Unimplemented(
        "bump_inplace_version is only supported on DenseTensor now."));
  }
}

uint32_t Tensor::current_inplace_version() {
  if (is_dense_tensor()) {
    auto &inplace_version_counter =
385
        static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
386 387
    return inplace_version_counter.CurrentVersion();
  } else {
388 389
    LOG_FIRST_N(WARNING, 1)
        << "current_inplace_version is only supported on DenseTensor now.";
390 391 392 393
  }
  return 0;
}

394 395 396 397
void Tensor::reset_inplace_version(bool set_to_zero) {
  if (set_to_zero) {
    if (is_dense_tensor()) {
      auto &inplace_version_counter =
398
          static_cast<phi::DenseTensor *>(impl_.get())->InplaceVersionCounter();
399 400 401 402 403
      inplace_version_counter.SetInplaceVersionToZero();
    }
  }
}

404 405
}  // namespace experimental
}  // namespace paddle