RecurrentLayer.cpp 13.7 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "Layer.h"
#include "paddle/utils/Stat.h"
#include "SequenceToBatch.h"
#include "paddle/utils/CommandLineParser.h"

P_DEFINE_bool(rnn_use_batch, false, "Using the batch method for calculation.");

namespace paddle {

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
/**
 * @brief RecurrentLayer takes 1 input layer. The output size is the same with
 * input layer.
 * For each sequence [start, end] it performs the following computation:
 * \f[
 *    out_{i} = act(in_{i})     \      \      \text{for} \ i = start \\
 *    out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
 *
 * \f]
 * If reversed is true, the order is reversed:
 * \f[
 *   out_{i} = act(in_{i})           \    \   \text{for} \ i = end  \\
 *   out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
 * \f]
 * There are two methods to calculate rnn. One way is to compute rnn one
 * sequence by one sequence. The other way is to reorganize the input
 * into batches, then compute rnn one batch by one batch. Users can select
 * them by rnn_use_batch flag.
 */

Z
zhangjinchao01 已提交
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class RecurrentLayer : public Layer {
public:
  explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);

  void backward(const UpdateCallback& callback);

  void resetState();

  void setState(LayerStatePtr state);

  LayerStatePtr getState();

protected:
61 62 63 64 65 66 67
  /**
   * @brief If user do not set --rnn_use_batch=true, it will
   * compute rnn forward one sequence by one sequence in default.
   * @param batchSize Total words number of all samples in this batch.
   * @param numSequences The sample number.
   * @param starts Each start position of each samples.
   */
Z
zhangjinchao01 已提交
68
  void forwardSequence(int batchSize, size_t numSequences, const int* starts);
69 70 71 72 73 74
  /**
   * @brief Compute rnn forward by one sequence.
   * @param start The start position of this sequence (or sample).
   * @param length The length of this sequence (or sample), namely the words
   * number of this sequence.
   */
Z
zhangjinchao01 已提交
75
  void forwardOneSequence(int start, int length);
76 77 78 79 80 81
  /**
   * @brief Compute rnn backward one sequence by onesequence.
   * @param batchSize Total words number of all samples in this batch.
   * @param numSequences The sample number.
   * @param starts Each start position of each samples.
   */
Z
zhangjinchao01 已提交
82
  void backwardSequence(int batchSize, size_t numSequences, const int* starts);
83 84 85 86 87 88
  /**
   * @brief Compute rnn backward by one sequence.
   * @param start The start position of this sequence (or sample).
   * @param length The length of this sequence (or sample), namely the words
   * number of this sequence.
   */
Z
zhangjinchao01 已提交
89 90
  void backwardOneSequence(int start, int length);

91 92 93 94 95 96 97 98
  /**
   * @brief Reorganize input into batches and compute rnn forward batch
   * by batch. It will convert batch shape to sequence after finishing forward.
   * The batch info can refer to SequenceToBatch class.
   * @param batchSize Total words number of all samples in this batch.
   * @param numSequences The sample number.
   * @param starts Each start position of each samples.
   */
Z
zhangjinchao01 已提交
99
  void forwardBatch(int batchSize, size_t numSequences, const int* starts);
100 101 102 103 104 105 106 107

  /**
   * @brief Reorganize input into batches and compute rnn forward batch
   * by batch.
   * @param batchSize Total words number of all samples in this batch.
   * @param numSequences The sample number.
   * @param starts Each start position of each samples.
   */
Z
zhangjinchao01 已提交
108 109 110 111 112 113
  void backwardBatch(int batchSize, size_t numSequences, const int* starts);

protected:
  std::unique_ptr<Weight> weight_;
  std::unique_ptr<Weight> bias_;

114
  /// frameOutput_[i] is used to hold the i-th sample of output_
Z
zhangjinchao01 已提交
115 116
  std::vector<Argument> frameOutput_;
  MatrixPtr prevOutput_;
117
  /// Whether compute rnn by reverse.
Z
zhangjinchao01 已提交
118
  bool reversed_;
119 120
  /// If compute batch by batch, batchValue_ will be used to save the
  /// reorganized input value.
Z
zhangjinchao01 已提交
121
  std::unique_ptr<SequenceToBatch> batchValue_;
122 123
  /// If compute batch by batch, batchGrad_ will be used to save the
  /// gradient with respect to reorganized input value.
Z
zhangjinchao01 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
  std::unique_ptr<SequenceToBatch> batchGrad_;
};

REGISTER_LAYER(recurrent, RecurrentLayer);

bool RecurrentLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(1U, inputLayers_.size());
  CHECK_EQ(1U, parameters_.size());
  CHECK_EQ(getSize() * getSize(), parameters_[0]->getSize());
  weight_.reset(new Weight(getSize(), getSize(), parameters_[0]));
  if (biasParameter_.get() != NULL) {
    bias_.reset(new Weight(1, getSize(), biasParameter_));
  }
  reversed_ = config_.reversed();
  return true;
}

void RecurrentLayer::resetState() {
  CHECK(!reversed_) << "state is not allowed for reversed recurrent layer";
145 146
  Matrix::resizeOrCreate(
      prevOutput_, 1, getSize(), /* trans= */ false, useGpu_);
Z
zhangjinchao01 已提交
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
  prevOutput_->zeroMem();
}

void RecurrentLayer::setState(LayerStatePtr state) {
  CHECK(state->value.size() == 1) << "one matrix is expected for RNN state";
  prevOutput_->copyFrom(*(state->value[0]));
}

LayerStatePtr RecurrentLayer::getState() {
  LayerStatePtr res = std::make_shared<LayerState>();
  res->value.push_back(prevOutput_->clone(0, 0, useGpu_));
  res->value[0]->copyFrom(*prevOutput_);
  return res;
}

void RecurrentLayer::forward(PassType passType) {
  REGISTER_TIMER_INFO("RecurrentFwTimer", getName().c_str());
  Layer::forward(passType);
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  size_t numSequences = input.getNumSequences();
  resetOutput(batchSize, getSize());
  CHECK_EQ(getSize(), input.value->getWidth());
  const int* starts = input.sequenceStartPositions->getData(false);
  CHECK_EQ(starts[numSequences], batchSize);

  output_.value->assign(*input.value);
  if (bias_) {
    output_.value->addBias(*bias_->getW(), 1);
  }
  if (!FLAGS_rnn_use_batch) {
    forwardSequence(batchSize, numSequences, starts);
  } else {
    forwardBatch(batchSize, numSequences, starts);
  }
}

185 186
void RecurrentLayer::forwardSequence(int batchSize,
                                     size_t numSequences,
Z
zhangjinchao01 已提交
187 188 189 190 191
                                     const int* starts) {
  REGISTER_TIMER_INFO("RecurrentFwSequence", getName().c_str());
  frameOutput_.reserve(batchSize);
  for (int i = frameOutput_.size(); i < batchSize; ++i) {
    Argument arg;
192 193 194 195 196 197 198 199 200 201
    arg.value = Matrix::create(nullptr,
                               /* height= */ 1,
                               getSize(),
                               /* trans= */ false,
                               useGpu_);
    arg.grad = Matrix::create(nullptr,
                              /* height= */ 1,
                              getSize(),
                              /* trans= */ false,
                              useGpu_);
Z
zhangjinchao01 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
    frameOutput_.push_back(arg);
  }

  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].value->setData(output_.value->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    forwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::forwardOneSequence(int start, int length) {
  if (!reversed_) {
    if (prevOutput_) {
      frameOutput_[start].value->mul(prevOutput_, weight_->getW(), 1, 1);
    }
    activation_->forward(frameOutput_[start]);
    for (int i = 1; i < length; ++i) {
222 223
      frameOutput_[start + i].value->mul(
          frameOutput_[start + i - 1].value, weight_->getW(), 1, 1);
Z
zhangjinchao01 已提交
224 225 226 227 228 229 230 231
      activation_->forward(frameOutput_[start + i]);
    }
    if (prevOutput_) {
      prevOutput_->assign(*frameOutput_[start + length - 1].value);
    }
  } else {
    activation_->forward(frameOutput_[start + length - 1]);
    for (int i = length - 2; i >= 0; --i) {
232 233
      frameOutput_[start + i].value->mul(
          frameOutput_[start + i + 1].value, weight_->getW(), 1, 1);
Z
zhangjinchao01 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
      activation_->forward(frameOutput_[start + i]);
    }
  }
}

void RecurrentLayer::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTimer", getName().c_str());
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  const int* starts = input.sequenceStartPositions->getData(false);
  size_t numSequences = input.getNumSequences();

  if (!FLAGS_rnn_use_batch) {
    backwardSequence(batchSize, numSequences, starts);
  } else {
    backwardBatch(batchSize, numSequences, starts);
  }

  if (input.grad) {
    input.grad->add(*output_.grad);
  }

  if (bias_ && bias_->getWGrad()) {
    bias_->getWGrad()->collectBias(*output_.grad, 1);
    bias_->getParameterPtr()->incUpdate(callback);
  }

  weight_->getParameterPtr()->incUpdate(callback);
}

265 266
void RecurrentLayer::backwardSequence(int batchSize,
                                      size_t numSequences,
Z
zhangjinchao01 已提交
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
                                      const int* starts) {
  REGISTER_TIMER_INFO("RecurrentBwSequence", getName().c_str());
  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].grad->setData(output_.grad->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    backwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::backwardOneSequence(int start, int length) {
  MatrixPtr weightT = weight_->getW()->getTranspose();
  if (!reversed_) {
    for (int i = length - 1; i > 0; --i) {
      activation_->backward(frameOutput_[start + i]);
284 285
      frameOutput_[start + i - 1].grad->mul(
          frameOutput_[start + i].grad, weightT, 1, 1);
Z
zhangjinchao01 已提交
286 287 288 289 290
    }
    activation_->backward(frameOutput_[start]);
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
          output_.value->subMatrix(start, length - 1)->getTranspose(),
291 292 293
          output_.grad->subMatrix(start + 1, length - 1),
          1,
          1);
Z
zhangjinchao01 已提交
294 295 296 297
    }
  } else {
    for (int i = 0; i < length - 1; ++i) {
      activation_->backward(frameOutput_[start + i]);
298 299
      frameOutput_[start + i + 1].grad->mul(
          frameOutput_[start + i].grad, weightT, 1, 1);
Z
zhangjinchao01 已提交
300 301 302 303 304
    }
    activation_->backward(frameOutput_[start + length - 1]);
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
          output_.value->subMatrix(start + 1, length - 1)->getTranspose(),
305 306 307
          output_.grad->subMatrix(start, length - 1),
          1,
          1);
Z
zhangjinchao01 已提交
308 309 310 311
    }
  }
}

312 313
void RecurrentLayer::forwardBatch(int batchSize,
                                  size_t numSequences,
Z
zhangjinchao01 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
                                  const int* starts) {
  if (!batchValue_) {
    batchValue_.reset(new SequenceToBatch(useGpu_));
  }

  batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_);

  batchValue_->copyFromSeq(*output_.value);
  {
    REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    /* forward one batch */
    for (size_t n = 0; n < batchValue_->getNumBatch(); n++) {
      MatrixPtr batch2 = batchValue_->getBatchValue(n);

      if (n != 0) {
        MatrixPtr batch1 =
            batchValue_->getBatchValue(n - 1, batch2->getHeight());
        batch2->mul(batch1, weight_->getW(), 1, 1);
      }
      Argument arg;
      arg.value = batch2;
      activation_->forward(arg);
    }
  }
  batchValue_->copyBackSeq(*output_.value);
}

342 343
void RecurrentLayer::backwardBatch(int batchSize,
                                   size_t numSequences,
Z
zhangjinchao01 已提交
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
                                   const int* starts) {
  if (!batchGrad_) {
    batchGrad_.reset(new SequenceToBatch(useGpu_));
  }
  batchGrad_->shareIndexWith(*batchValue_);

  size_t numBatch = batchGrad_->getNumBatch();
  bool backwardByBatch = numBatch < numSequences;

  batchGrad_->copyFromSeq(*output_.grad);
  {
    REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str());
    MatrixPtr weightT = weight_->getW()->getTranspose();
    AsyncGpuBlock asyncGpuBlock;
    /* backward one batch */
    for (int n = (int)numBatch - 1; n >= 0; n--) {
      MatrixPtr batch2 = batchGrad_->getBatchValue(n);
      MatrixPtr batch1 = batchValue_->getBatchValue(n, batch2->getHeight());

      Argument arg;
      arg.value = batch1;
      arg.grad = batch2;
      activation_->backward(arg);

      if (n != 0) {
        batch1 = batchGrad_->getBatchValue(n - 1, batch2->getHeight());
        batch1->mul(batch2, weightT, 1, 1);
      }

      if (backwardByBatch && weight_->getWGrad()) {
        if (n != 0) {
          /* backward weight */
          batch1 = batchValue_->getBatchValue(n - 1, batch2->getHeight());
          weight_->getWGrad()->mul(batch1->getTranspose(), batch2, 1, 1);
        }
      }
    }
  }

  batchGrad_->copyBackSeq(*output_.grad);

  if (!backwardByBatch && weight_->getWGrad()) {
    REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    for (size_t seq = 0; seq < numSequences; ++seq) {
      int len = starts[seq + 1] - starts[seq];
      if (!reversed_) {
        weight_->getWGrad()->mul(
            output_.value->subMatrix(starts[seq], len - 1)->getTranspose(),
393 394 395
            output_.grad->subMatrix(starts[seq] + 1, len - 1),
            1,
            1);
Z
zhangjinchao01 已提交
396 397 398
      } else {
        weight_->getWGrad()->mul(
            output_.value->subMatrix(starts[seq] + 1, len - 1)->getTranspose(),
399 400 401
            output_.grad->subMatrix(starts[seq], len - 1),
            1,
            1);
Z
zhangjinchao01 已提交
402 403 404 405 406 407
      }
    }
  }
}

}  // namespace paddle