RecurrentLayer.cpp 11.1 KB
Newer Older
Z
zhangjinchao01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */


#include "Layer.h"
#include "paddle/utils/Stat.h"
#include "SequenceToBatch.h"
#include "paddle/utils/CommandLineParser.h"

P_DEFINE_bool(rnn_use_batch, false, "Using the batch method for calculation.");

namespace paddle {

/*
RecurrentLayer takes 1 input layer with the same size.
For each sequence [start, end] it performs the following computation:
out_i = act(in_i)                 for i = start
out_i = act(in_i + out_{i-1} * W) for start < i <= end

If reversed is true, the order is reversed:
out_i = act(in_i)                 for i = end
out_i = act(in_i + out_{i+1} * W) for start <= i < end
*/
class RecurrentLayer : public Layer {
public:
  explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {}

  bool init(const LayerMap& layerMap, const ParameterMap& parameterMap);

  void forward(PassType passType);

  void backward(const UpdateCallback& callback);

  void resetState();

  void setState(LayerStatePtr state);

  LayerStatePtr getState();

protected:
  void forwardSequence(int batchSize, size_t numSequences, const int* starts);
  void forwardOneSequence(int start, int length);
  void backwardSequence(int batchSize, size_t numSequences, const int* starts);
  void backwardOneSequence(int start, int length);

  void forwardBatch(int batchSize, size_t numSequences, const int* starts);
  void backwardBatch(int batchSize, size_t numSequences, const int* starts);

protected:
  std::unique_ptr<Weight> weight_;
  std::unique_ptr<Weight> bias_;

  // frameOutput_[i] is used to hold the i-th sample of output_
  std::vector<Argument> frameOutput_;
  MatrixPtr prevOutput_;
  bool reversed_;
  std::unique_ptr<SequenceToBatch> batchValue_;
  std::unique_ptr<SequenceToBatch> batchGrad_;
};

REGISTER_LAYER(recurrent, RecurrentLayer);

bool RecurrentLayer::init(const LayerMap& layerMap,
                          const ParameterMap& parameterMap) {
  if (!Layer::init(layerMap, parameterMap)) return false;
  CHECK_EQ(1U, inputLayers_.size());
  CHECK_EQ(1U, parameters_.size());
  CHECK_EQ(getSize() * getSize(), parameters_[0]->getSize());
  weight_.reset(new Weight(getSize(), getSize(), parameters_[0]));
  if (biasParameter_.get() != NULL) {
    bias_.reset(new Weight(1, getSize(), biasParameter_));
  }
  reversed_ = config_.reversed();
  return true;
}

void RecurrentLayer::resetState() {
  CHECK(!reversed_) << "state is not allowed for reversed recurrent layer";
  Matrix::resizeOrCreate(prevOutput_, 1, getSize(), /* trans= */ false,
                         useGpu_);
  prevOutput_->zeroMem();
}

void RecurrentLayer::setState(LayerStatePtr state) {
  CHECK(state->value.size() == 1) << "one matrix is expected for RNN state";
  prevOutput_->copyFrom(*(state->value[0]));
}

LayerStatePtr RecurrentLayer::getState() {
  LayerStatePtr res = std::make_shared<LayerState>();
  res->value.push_back(prevOutput_->clone(0, 0, useGpu_));
  res->value[0]->copyFrom(*prevOutput_);
  return res;
}

void RecurrentLayer::forward(PassType passType) {
  REGISTER_TIMER_INFO("RecurrentFwTimer", getName().c_str());
  Layer::forward(passType);
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  size_t numSequences = input.getNumSequences();
  resetOutput(batchSize, getSize());
  CHECK_EQ(getSize(), input.value->getWidth());
  const int* starts = input.sequenceStartPositions->getData(false);
  CHECK_EQ(starts[numSequences], batchSize);

  output_.value->assign(*input.value);
  if (bias_) {
    output_.value->addBias(*bias_->getW(), 1);
  }
  if (!FLAGS_rnn_use_batch) {
    forwardSequence(batchSize, numSequences, starts);
  } else {
    forwardBatch(batchSize, numSequences, starts);
  }
}

void RecurrentLayer::forwardSequence(int batchSize, size_t numSequences,
                                     const int* starts) {
  REGISTER_TIMER_INFO("RecurrentFwSequence", getName().c_str());
  frameOutput_.reserve(batchSize);
  for (int i = frameOutput_.size(); i < batchSize; ++i) {
    Argument arg;
    arg.value = Matrix::create(nullptr, /* height= */ 1, getSize(),
                               /* trans= */ false, useGpu_);
    arg.grad = Matrix::create(nullptr, /* height= */ 1, getSize(),
                              /* trans= */ false, useGpu_);
    frameOutput_.push_back(arg);
  }

  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].value->setData(output_.value->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    forwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::forwardOneSequence(int start, int length) {
  if (!reversed_) {
    if (prevOutput_) {
      frameOutput_[start].value->mul(prevOutput_, weight_->getW(), 1, 1);
    }
    activation_->forward(frameOutput_[start]);
    for (int i = 1; i < length; ++i) {
      frameOutput_[start + i].value->mul(frameOutput_[start + i - 1].value,
                                         weight_->getW(), 1, 1);
      activation_->forward(frameOutput_[start + i]);
    }
    if (prevOutput_) {
      prevOutput_->assign(*frameOutput_[start + length - 1].value);
    }
  } else {
    activation_->forward(frameOutput_[start + length - 1]);
    for (int i = length - 2; i >= 0; --i) {
      frameOutput_[start + i].value->mul(frameOutput_[start + i + 1].value,
                                         weight_->getW(), 1, 1);
      activation_->forward(frameOutput_[start + i]);
    }
  }
}

void RecurrentLayer::backward(const UpdateCallback& callback) {
  REGISTER_TIMER_INFO("RecurrentBwTimer", getName().c_str());
  const Argument& input = getInput(0);
  CHECK(input.sequenceStartPositions);
  int batchSize = input.getBatchSize();
  const int* starts = input.sequenceStartPositions->getData(false);
  size_t numSequences = input.getNumSequences();

  if (!FLAGS_rnn_use_batch) {
    backwardSequence(batchSize, numSequences, starts);
  } else {
    backwardBatch(batchSize, numSequences, starts);
  }

  if (input.grad) {
    input.grad->add(*output_.grad);
  }

  if (bias_ && bias_->getWGrad()) {
    bias_->getWGrad()->collectBias(*output_.grad, 1);
    bias_->getParameterPtr()->incUpdate(callback);
  }

  weight_->getParameterPtr()->incUpdate(callback);
}

void RecurrentLayer::backwardSequence(int batchSize, size_t numSequences,
                                      const int* starts) {
  REGISTER_TIMER_INFO("RecurrentBwSequence", getName().c_str());
  for (int i = 0; i < batchSize; ++i) {
    frameOutput_[i].grad->setData(output_.grad->getData() + i * getSize());
  }

  AsyncGpuBlock asyncGpuBlock;
  for (size_t i = 0; i < numSequences; ++i) {
    backwardOneSequence(starts[i], starts[i + 1] - starts[i]);
  }
}

void RecurrentLayer::backwardOneSequence(int start, int length) {
  MatrixPtr weightT = weight_->getW()->getTranspose();
  if (!reversed_) {
    for (int i = length - 1; i > 0; --i) {
      activation_->backward(frameOutput_[start + i]);
      frameOutput_[start + i - 1].grad->mul(frameOutput_[start + i].grad,
                                            weightT, 1, 1);
    }
    activation_->backward(frameOutput_[start]);
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
          output_.value->subMatrix(start, length - 1)->getTranspose(),
          output_.grad->subMatrix(start + 1, length - 1), 1, 1);
    }
  } else {
    for (int i = 0; i < length - 1; ++i) {
      activation_->backward(frameOutput_[start + i]);
      frameOutput_[start + i + 1].grad->mul(frameOutput_[start + i].grad,
                                            weightT, 1, 1);
    }
    activation_->backward(frameOutput_[start + length - 1]);
    if (weight_->getWGrad()) {
      weight_->getWGrad()->mul(
          output_.value->subMatrix(start + 1, length - 1)->getTranspose(),
          output_.grad->subMatrix(start, length - 1), 1, 1);
    }
  }
}

void RecurrentLayer::forwardBatch(int batchSize, size_t numSequences,
                                  const int* starts) {
  if (!batchValue_) {
    batchValue_.reset(new SequenceToBatch(useGpu_));
  }

  batchValue_->resizeOrCreateBatch(batchSize, numSequences, starts, reversed_);

  batchValue_->copyFromSeq(*output_.value);
  {
    REGISTER_TIMER_INFO("RecurrentFwBatch", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    /* forward one batch */
    for (size_t n = 0; n < batchValue_->getNumBatch(); n++) {
      MatrixPtr batch2 = batchValue_->getBatchValue(n);

      if (n != 0) {
        MatrixPtr batch1 =
            batchValue_->getBatchValue(n - 1, batch2->getHeight());
        batch2->mul(batch1, weight_->getW(), 1, 1);
      }
      Argument arg;
      arg.value = batch2;
      activation_->forward(arg);
    }
  }
  batchValue_->copyBackSeq(*output_.value);
}

void RecurrentLayer::backwardBatch(int batchSize, size_t numSequences,
                                   const int* starts) {
  if (!batchGrad_) {
    batchGrad_.reset(new SequenceToBatch(useGpu_));
  }
  batchGrad_->shareIndexWith(*batchValue_);

  size_t numBatch = batchGrad_->getNumBatch();
  bool backwardByBatch = numBatch < numSequences;

  batchGrad_->copyFromSeq(*output_.grad);
  {
    REGISTER_TIMER_INFO("RecurrentBwData", getName().c_str());
    MatrixPtr weightT = weight_->getW()->getTranspose();
    AsyncGpuBlock asyncGpuBlock;
    /* backward one batch */
    for (int n = (int)numBatch - 1; n >= 0; n--) {
      MatrixPtr batch2 = batchGrad_->getBatchValue(n);
      MatrixPtr batch1 = batchValue_->getBatchValue(n, batch2->getHeight());

      Argument arg;
      arg.value = batch1;
      arg.grad = batch2;
      activation_->backward(arg);

      if (n != 0) {
        batch1 = batchGrad_->getBatchValue(n - 1, batch2->getHeight());
        batch1->mul(batch2, weightT, 1, 1);
      }

      if (backwardByBatch && weight_->getWGrad()) {
        if (n != 0) {
          /* backward weight */
          batch1 = batchValue_->getBatchValue(n - 1, batch2->getHeight());
          weight_->getWGrad()->mul(batch1->getTranspose(), batch2, 1, 1);
        }
      }
    }
  }

  batchGrad_->copyBackSeq(*output_.grad);

  if (!backwardByBatch && weight_->getWGrad()) {
    REGISTER_TIMER_INFO("RecurrentBwWeight", getName().c_str());
    AsyncGpuBlock asyncGpuBlock;
    for (size_t seq = 0; seq < numSequences; ++seq) {
      int len = starts[seq + 1] - starts[seq];
      if (!reversed_) {
        weight_->getWGrad()->mul(
            output_.value->subMatrix(starts[seq], len - 1)->getTranspose(),
            output_.grad->subMatrix(starts[seq] + 1, len - 1), 1, 1);
      } else {
        weight_->getWGrad()->mul(
            output_.value->subMatrix(starts[seq] + 1, len - 1)->getTranspose(),
            output_.grad->subMatrix(starts[seq], len - 1), 1, 1);
      }
    }
  }
}

}  // namespace paddle