ctr_dataset_reader.py 3.6 KB
Newer Older
T
tangwei12 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

17
import os
T
tangwei12 已提交
18 19
import logging
import tarfile
20 21

import random
T
tangwei12 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

import paddle
import paddle.fluid.incubate.data_generator as data_generator

logging.basicConfig()
logger = logging.getLogger("paddle")
logger.setLevel(logging.INFO)

DATA_URL = "http://paddle-ctr-data.bj.bcebos.com/avazu_ctr_data.tgz"
DATA_MD5 = "c11df99fbd14e53cd4bfa6567344b26e"
"""
avazu_ctr_data/train.txt
avazu_ctr_data/infer.txt
avazu_ctr_data/test.txt
avazu_ctr_data/data.meta.txt
"""


def download_file():
    file_name = "avazu_ctr_data"
    path = paddle.dataset.common.download(DATA_URL, file_name, DATA_MD5)

    dir_name = os.path.dirname(path)
    text_file_dir_name = os.path.join(dir_name, file_name)

    if not os.path.exists(text_file_dir_name):
        tar = tarfile.open(path, "r:gz")
        tar.extractall(dir_name)
    return text_file_dir_name


def load_dnn_input_record(sent):
    return list(map(int, sent.split()))


def load_lr_input_record(sent):
    res = []
    for _ in [x.split(':') for x in sent.split()]:
        res.append(int(_[0]))
    return res


1
123malin 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81
class CtrReader(object):
    def __init__(self):
        pass

    def _reader_creator(self, filelist):
        def reader():
            for file in filelist:
                with open(file, 'r') as f:
                    for line in f:
                        fs = line.strip().split('\t')
                        dnn_input = load_dnn_input_record(fs[0])
                        lr_input = load_lr_input_record(fs[1])
                        click = [int(fs[2])]
                        yield [dnn_input] + [lr_input] + [click]

        return reader


T
tangwei12 已提交
82 83
class DatasetCtrReader(data_generator.MultiSlotDataGenerator):
    def generate_sample(self, line):
84 85 86
        def get_rand(low=0.0, high=1.0):
            return random.random()

T
tangwei12 已提交
87
        def iter():
88
            if get_rand() < 0.05:
89 90 91 92 93 94 95
                fs = line.strip().split('\t')
                dnn_input = load_dnn_input_record(fs[0])
                lr_input = load_lr_input_record(fs[1])
                click = [int(fs[2])]
                yield ("dnn_data", dnn_input), \
                      ("lr_data", lr_input), \
                      ("click", click)
T
tangwei12 已提交
96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124

        return iter


def prepare_data():
    """
    load data meta info from path, return (dnn_input_dim, lr_input_dim)
    """
    file_dir_name = download_file()
    meta_file_path = os.path.join(file_dir_name, 'data.meta.txt')
    train_file_path = os.path.join(file_dir_name, 'train.txt')
    with open(meta_file_path, "r") as f:
        lines = f.readlines()
    err_info = "wrong meta format"
    assert len(lines) == 2, err_info
    assert 'dnn_input_dim:' in lines[0] and 'lr_input_dim:' in lines[
        1], err_info
    res = map(int, [_.split(':')[1] for _ in lines])
    res = list(res)
    dnn_input_dim = res[0]
    lr_input_dim = res[1]
    logger.info('dnn input dim: %d' % dnn_input_dim)
    logger.info('lr input dim: %d' % lr_input_dim)
    return dnn_input_dim, lr_input_dim, train_file_path


if __name__ == "__main__":
    pairwise_reader = DatasetCtrReader()
    pairwise_reader.run_from_stdin()