math_function.cu 11.6 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
Q
qijun 已提交
16
#include "paddle/platform/cuda_helper.h"
Q
qijun 已提交
17

Q
qijun 已提交
18 19 20 21 22
namespace paddle {
namespace operators {
namespace math {

template <>
23 24
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
25 26 27
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
28 29
                                     const float* B, const float beta,
                                     float* C) {
Q
qijun 已提交
30 31
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
32 33
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
34
  cublasOperation_t cuTransA =
Q
qijun 已提交
35
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
36
  cublasOperation_t cuTransB =
Q
qijun 已提交
37
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
38

Q
qijun 已提交
39
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
40 41
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
42
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
43 44 45
}

template <>
46 47
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
48 49 50 51
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
52
                                      double* C) {
Q
qijun 已提交
53 54
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
55 56
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
57
  cublasOperation_t cuTransA =
Q
qijun 已提交
58
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
59
  cublasOperation_t cuTransB =
Q
qijun 已提交
60
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
61
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
62 63
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
64
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
65 66
}

G
guosheng 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
template <>
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const bool transA, const bool transB,
                                     const int M, const int N, const int K,
                                     const float alpha, const float* A,
                                     const int lda, const float* B,
                                     const int ldb, const float beta, float* C,
                                     const int ldc) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
}

template <>
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const bool transA, const bool transB,
                                      const int M, const int N, const int K,
                                      const double alpha, const double* A,
                                      const int lda, const double* B,
                                      const int ldb, const double beta,
                                      double* C, const int ldc) {
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
  cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T;
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc));
}

Q
qijun 已提交
103
template <>
104 105 106 107
void matmul<platform::GPUPlace, float>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
108 109 110 111 112 113 114 115 116
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
117
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
118

Q
qijun 已提交
119 120 121
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
122

Q
qijun 已提交
123 124
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
125

Q
qijun 已提交
126
  gemm<platform::GPUPlace, float>(
127 128
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
129 130 131
}

template <>
132 133 134 135
void matmul<platform::GPUPlace, double>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
136 137 138 139 140 141 142 143 144
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
145
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
146

Q
qijun 已提交
147 148 149 150 151 152
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
153

Q
qijun 已提交
154
  gemm<platform::GPUPlace, double>(
155 156
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
157
}
Q
qijun 已提交
158

Q
qijun 已提交
159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
template <typename T>
struct SelectedRowsAdd<platform::GPUPlace, T> {
  void operator()(const platform::DeviceContext& context,
                  const framework::SelectedRows& input1,
                  const framework::SelectedRows& input2,
                  framework::SelectedRows* output) {
    auto in1_height = input1.height();
    PADDLE_ENFORCE_EQ(in1_height, input2.height());
    output->set_height(in1_height);

    auto& in1_rows = input1.rows();
    auto& in2_rows = input2.rows();
    std::vector<int64_t> out_rows;
    out_rows.reserve(in1_rows.size() + in2_rows.size());

    // concat rows
    out_rows.insert(out_rows.end(), in1_rows.begin(), in1_rows.end());
    out_rows.insert(out_rows.end(), in2_rows.begin(), in2_rows.end());
    output->set_rows(out_rows);

    auto* out_value = output->mutable_value();
    auto& in1_value = input1.value();
    auto& in2_value = input2.value();

    auto in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, in2_value.numel() / in2_rows.size());
    PADDLE_ENFORCE_EQ(in1_row_numel, out_value->numel() / out_rows.size());

    auto* out_data = out_value->data<T>();
    auto* in1_data = in1_value.data<T>();

    auto in1_place = input1.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in1_place));
    auto in2_place = input2.place();
    PADDLE_ENFORCE(platform::is_gpu_place(in2_place));
    auto out_place = context.GetPlace();
Q
qijun 已提交
195
    PADDLE_ENFORCE(platform::is_gpu_place(out_place));
Q
qijun 已提交
196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214

    memory::Copy(
        boost::get<platform::GPUPlace>(out_place), out_data,
        boost::get<platform::GPUPlace>(in1_place), in1_data,
        in1_value.numel() * sizeof(T),
        reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());

    auto* in2_data = in2_value.data<T>();
    memory::Copy(
        boost::get<platform::GPUPlace>(out_place), out_data + in1_value.numel(),
        boost::get<platform::GPUPlace>(in2_place), in2_data,
        in2_value.numel() * sizeof(T),
        reinterpret_cast<const platform::CUDADeviceContext&>(context).stream());
  }
};

template struct SelectedRowsAdd<platform::GPUPlace, float>;

namespace {
Q
qijun 已提交
215 216 217 218 219 220 221
template <typename T>
__global__ void SelectedRowsAddTensorKernel(const T* selected_rows,
                                            const int64_t* rows,
                                            T* tensor_out,
                                            int64_t row_numel,
                                            int block_size) {
  const int ty = blockIdx.y;
Q
qijun 已提交
222 223 224 225 226 227
  int tid = threadIdx.x;

  selected_rows += ty * row_numel;
  tensor_out += rows[ty] * row_numel;

  for (int index = tid; index < row_numel; index += block_size) {
Q
qijun 已提交
228 229 230 231
    // Since index in rows of SelectedRows can be duplicate, we can not use
    // tensor_out[index] += selected_rows[index]; Instead, we have to use
    // AtomicAdd to avoid concurrent write error.
    paddle::platform::CudaAtomicAdd(&tensor_out[index], selected_rows[index]);
Q
qijun 已提交
232 233
  }
}
Q
qijun 已提交
234
}  // namespace
Q
qijun 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257

template <typename T>
struct SelectedRowsAddTensor<platform::GPUPlace, T> {
  void operator()(const platform::DeviceContext& context,
                  const framework::SelectedRows& input1,
                  const framework::Tensor& input2, framework::Tensor* output) {
    auto in1_height = input1.height();
    auto in2_dims = input2.dims();
    auto out_dims = output->dims();
    PADDLE_ENFORCE_EQ(in1_height, in2_dims[0]);
    PADDLE_ENFORCE_EQ(in1_height, out_dims[0]);

    auto& in1_value = input1.value();
    auto& in1_rows = input1.rows();

    int64_t in1_row_numel = in1_value.numel() / in1_rows.size();
    PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height);
    PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height);

    auto* in1_data = in1_value.data<T>();
    auto* in2_data = input2.data<T>();
    auto* out_data = output->data<T>();

Q
qijun 已提交
258 259 260 261
    SetConstant<platform::GPUPlace, T> functor;
    functor(context, output, 0.0);

    int block_size = 256;
Q
qijun 已提交
262 263
    dim3 threads(block_size, 1);
    dim3 grid(1, in1_height);
Q
qijun 已提交
264
    SelectedRowsAddTensorKernel<T><<<
Q
qijun 已提交
265
        grid, threads, 0,
Q
qijun 已提交
266 267 268 269 270 271 272 273
        reinterpret_cast<const platform::CUDADeviceContext&>(context).stream()
        >>>(in1_data, in1_rows.data(),
            out_data, in1_row_numel, block_size);

    auto out_eigen = framework::EigenVector<T>::Flatten(*output);
    auto in2_eigen = framework::EigenVector<T>::Flatten(input2);
    out_eigen.device(*context.GetEigenDevice<platform::GPUPlace>()) =
        out_eigen + in2_eigen;
Q
qijun 已提交
274 275 276 277 278
  }
};

template struct SelectedRowsAddTensor<platform::GPUPlace, float>;

Q
qijun 已提交
279 280 281
}  // namespace math
}  // namespace operators
}  // namespace paddle