math_function.cu 5.2 KB
Newer Older
Q
qijun 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/operators/math/math_function.h"
Q
qijun 已提交
16

Q
qijun 已提交
17 18 19 20 21
namespace paddle {
namespace operators {
namespace math {

template <>
22 23
void gemm<platform::GPUPlace, float>(const platform::DeviceContext& context,
                                     const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
24 25 26
                                     const CBLAS_TRANSPOSE transB, const int M,
                                     const int N, const int K,
                                     const float alpha, const float* A,
27 28
                                     const float* B, const float beta,
                                     float* C) {
Q
qijun 已提交
29 30
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
31 32
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
33
  cublasOperation_t cuTransA =
Q
qijun 已提交
34
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
35
  cublasOperation_t cuTransB =
Q
qijun 已提交
36
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
37

Q
qijun 已提交
38
  PADDLE_ENFORCE(platform::dynload::cublasSgemm(
39 40
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
41
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
42 43 44
}

template <>
45 46
void gemm<platform::GPUPlace, double>(const platform::DeviceContext& context,
                                      const CBLAS_TRANSPOSE transA,
Q
qijun 已提交
47 48 49 50
                                      const CBLAS_TRANSPOSE transB, const int M,
                                      const int N, const int K,
                                      const double alpha, const double* A,
                                      const double* B, const double beta,
51
                                      double* C) {
Q
qijun 已提交
52 53
  // Note that cublas follows fortran order, so the order is different from
  // the cblas convention.
Q
qijun 已提交
54 55
  int lda = (transA == CblasNoTrans) ? K : M;
  int ldb = (transB == CblasNoTrans) ? N : K;
Q
qijun 已提交
56
  cublasOperation_t cuTransA =
Q
qijun 已提交
57
      (transA == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
58
  cublasOperation_t cuTransB =
Q
qijun 已提交
59
      (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T;
Q
qijun 已提交
60
  PADDLE_ENFORCE(platform::dynload::cublasDgemm(
61 62
      reinterpret_cast<const platform::CUDADeviceContext&>(context)
          .cublas_handle(),
Q
qijun 已提交
63
      cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N));
Q
qijun 已提交
64 65
}

Q
qijun 已提交
66
template <>
67 68 69 70
void matmul<platform::GPUPlace, float>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha,
    framework::Tensor* matrix_out, float beta) {
Q
qijun 已提交
71 72 73 74 75 76 77 78 79
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
80
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
81

Q
qijun 已提交
82 83 84
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];
Q
qijun 已提交
85

Q
qijun 已提交
86 87
  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
88

Q
qijun 已提交
89
  gemm<platform::GPUPlace, float>(
90 91
      context, transA, transB, M, N, K, alpha, matrix_a.data<float>(),
      matrix_b.data<float>(), beta, matrix_out->data<float>());
Q
qijun 已提交
92 93 94
}

template <>
95 96 97 98
void matmul<platform::GPUPlace, double>(
    const platform::DeviceContext& context, const framework::Tensor& matrix_a,
    bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha,
    framework::Tensor* matrix_out, double beta) {
Q
qijun 已提交
99 100 101 102 103 104 105 106 107
  auto dim_a = matrix_a.dims();
  auto dim_b = matrix_b.dims();
  auto dim_out = matrix_out->dims();
  PADDLE_ENFORCE(dim_a.size() == 2 && dim_b.size() == 2 && dim_out.size() == 2,
                 "The input and output of matmul be matrix");

  PADDLE_ENFORCE(platform::is_gpu_place(matrix_a.place()) &&
                     platform::is_gpu_place(matrix_b.place()) &&
                     platform::is_gpu_place(matrix_out->place()),
Q
qijun 已提交
108
                 "Matrix must all be in GPUPlace");
Q
qijun 已提交
109

Q
qijun 已提交
110 111 112 113 114 115
  int M = dim_out[0];
  int N = dim_out[1];
  int K = (trans_a == false) ? dim_a[1] : dim_a[0];

  CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans;
  CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans;
Q
qijun 已提交
116

Q
qijun 已提交
117
  gemm<platform::GPUPlace, double>(
118 119
      context, transA, transB, M, N, K, alpha, matrix_a.data<double>(),
      matrix_b.data<double>(), beta, matrix_out->data<double>());
Q
qijun 已提交
120
}
Q
qijun 已提交
121

Q
qijun 已提交
122 123 124
}  // namespace math
}  // namespace operators
}  // namespace paddle