fc_lstm_fuse_pass.cc 11.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

15
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
T
tensor-tang 已提交
16
#include <string>
W
wanghuancoder 已提交
17

18
#include "paddle/fluid/framework/op_version_registry.h"
19

20 21 22 23 24 25
namespace paddle {
namespace framework {
class Scope;
}  // namespace framework
}  // namespace paddle

26 27 28 29
namespace paddle {
namespace framework {
namespace ir {

W
wanghuancoder 已提交
30 31
class Node;

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
MulLstmFusePass::MulLstmFusePass() {
  AddOpCompat(OpCompat("lstm"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("H0")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("C0")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("Weight")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddOutput("Hidden")
      .IsTensor()
      .End()
      .AddOutput("Cell")
      .IsTensor()
      .End()
      .AddOutput("BatchGate")
      .IsTensor()
      .End()
      .AddOutput("BatchCellPreAct")
      .IsTensor()
      .End()
      .AddAttr("use_peepholes")
      .IsType<bool>()
      .End()
      .AddAttr("is_reverse")
      .IsType<bool>()
      .End()
      .AddAttr("gate_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("cell_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("candidate_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End();
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(1)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();
}

FCLstmFusePass::FCLstmFusePass() {
  AddOpCompat(OpCompat("lstm"))
      .AddInput("Input")
      .IsTensor()
      .End()
      .AddInput("H0")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("C0")
      .IsTensor()
      .IsOptional()
      .End()
      .AddInput("Weight")
      .IsTensor()
      .End()
      .AddInput("Bias")
      .IsTensor()
      .End()
      .AddOutput("Hidden")
      .IsTensor()
      .End()
      .AddOutput("Cell")
      .IsTensor()
      .End()
      .AddOutput("BatchGate")
      .IsTensor()
      .End()
      .AddOutput("BatchCellPreAct")
      .IsTensor()
      .End()
      .AddAttr("use_peepholes")
      .IsType<bool>()
      .End()
      .AddAttr("is_reverse")
      .IsType<bool>()
      .End()
      .AddAttr("gate_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("cell_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End()
      .AddAttr("candidate_activation")
      .IsStringIn({"sigmoid", "tanh", "relu", "identity"})
      .End();
  AddOpCompat(OpCompat("mul"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("x_num_col_dims")
      .IsNumEQ(1)
      .End()
      .AddAttr("y_num_col_dims")
      .IsNumEQ(1)
      .End();
  AddOpCompat(OpCompat("elementwise_add"))
      .AddInput("X")
      .IsTensor()
      .End()
      .AddInput("Y")
      .IsTensor()
      .End()
      .AddOutput("Out")
      .IsTensor()
      .End()
      .AddAttr("axis")
      .IsNumGE(-1)
      .End();
}

int FCLstmFusePass::BuildFusion(Graph* graph, const std::string& name_scope,
                                Scope* scope, bool with_fc_bias) const {
Y
Yan Chunwei 已提交
175 176
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();
177

Y
Yan Chunwei 已提交
178 179
  // Build pattern
  PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
180 181
                  ->assert_is_op_input("mul")
                  ->assert_var_not_persistable();
Y
Yan Chunwei 已提交
182
  patterns::FC fc_pattern(pattern, name_scope);
183

184
  auto* fc_out = fc_pattern(x, with_fc_bias, /* with_relu */ false);
Y
Yan Chunwei 已提交
185 186
  patterns::LSTM lstm_pattern(pattern, name_scope);
  lstm_pattern(fc_out);
187 188

  // Create New OpDesc
Y
Yan Chunwei 已提交
189 190
  auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x,
                          Node* weight_h, Node* bias, Node* hidden, Node* cell,
191
                          Node* xx, Node* fc_bias, const bool use_mkldnn) {
192 193
    OpDesc op_desc;
    op_desc.SetType("fusion_lstm");
Y
Yan Chunwei 已提交
194
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
195 196 197 198 199
    SET_IN(X, input);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
    SET_IN(Bias, bias);
#undef SET_IN
200 201
    if (with_fc_bias) {
      // Add FC-bias with LSTM-bias and create a new weight
202 203
      PADDLE_ENFORCE_NOT_NULL(
          scope, platform::errors::InvalidArgument("Scope cannot be nullptr."));
Y
Yan Chunwei 已提交
204
      auto* lstm_bias_var = scope->FindVar(bias->Name());
205
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
206 207 208
      PADDLE_ENFORCE_NOT_NULL(lstm_bias_var,
                              platform::errors::InvalidArgument(
                                  "Lstm bias var ptr cannot be nullptr."));
209 210 211 212 213
      PADDLE_ENFORCE_NOT_NULL(fc_bias_var,
                              platform::errors::InvalidArgument(
                                  "FC bias var ptr cannot be nullptr."));
      auto* lstm_bias_tensor =
          lstm_bias_var->GetMutable<framework::LoDTensor>();
214 215
      const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();

216 217 218
      auto lstm_bias_data =
          lstm_bias_tensor->mutable_data<float>(platform::CPUPlace());
      auto* fc_bias_data = fc_bias_tensor.data<float>();
219

220 221
      for (int i = 0; i < lstm_bias_tensor->numel(); i++) {
        lstm_bias_data[i] += fc_bias_data[i];
222 223
      }
    }
224 225 226

    op_desc.SetInput("H0", {});
    op_desc.SetInput("C0", {});
Y
Yan Chunwei 已提交
227 228 229 230 231
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetOutput("Cell", {cell->Name()});
    op_desc.SetOutput("XX", {xx->Name()});
    op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
    op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
232
    op_desc.SetAttr("use_mkldnn", use_mkldnn);
T
tensor-tang 已提交
233 234
    // TODO(TJ): get from attr
    op_desc.SetAttr("use_seq", true);
T
tensor-tang 已提交
235

236
// Create temp variables.
Y
Yan Chunwei 已提交
237 238
#define OP_SET_OUT(x)                            \
  const std::string x = patterns::UniqueKey(#x); \
239 240 241 242 243 244
  op_desc.SetOutput(#x, {x});

    OP_SET_OUT(BatchedGate);
    OP_SET_OUT(BatchedCellPreAct);
    OP_SET_OUT(BatchedInput);
    OP_SET_OUT(CheckedCell);
T
tensor-tang 已提交
245 246 247 248 249
    OP_SET_OUT(BatchedCell);
    OP_SET_OUT(BatchedHidden);
    OP_SET_OUT(ReorderedH0);
    OP_SET_OUT(ReorderedC0);
#undef OP_SET_OUT
250 251

    auto* op = graph->CreateOpNode(&op_desc);
252

Y
Yan Chunwei 已提交
253 254 255 256 257
    IR_NODE_LINK_TO(input, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
    IR_NODE_LINK_TO(bias, op);
    IR_NODE_LINK_TO(op, hidden);
258 259
    IR_NODE_LINK_TO(op, cell);
    IR_NODE_LINK_TO(op, xx);
260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276

#define IR_NODE(x)                                 \
  VarDesc key_##x(x);                              \
  key_##x.SetPersistable(false);                   \
  auto* node_##x = graph->CreateVarNode(&key_##x); \
  IR_NODE_LINK_TO(op, node_##x);

    IR_NODE(BatchedGate);
    IR_NODE(BatchedCellPreAct);
    IR_NODE(BatchedInput);
    IR_NODE(CheckedCell);
    IR_NODE(BatchedCell);
    IR_NODE(BatchedHidden);
    IR_NODE(ReorderedH0);
    IR_NODE(ReorderedC0);
#undef IR_NODE

277 278 279
    return op;
  };

280
  int fusion_count{0};
281

282 283
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
284 285 286 287
    if (!IsCompat(subgraph, g)) {
      LOG(WARNING) << "Pass in op compat failed.";
      return;
    }
Y
Yan Chunwei 已提交
288 289 290 291
    GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
292 293 294
    GET_IR_NODE_FROM_SUBGRAPH(BatchCellPreAct, BatchCellPreAct, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
Y
Yan Chunwei 已提交
295 296
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
297 298 299 300 301 302 303 304 305
    const bool use_mkldnn =
        (mul->Op()->GetAttrIfExists<bool>("use_mkldnn") &&
         lstm->Op()->GetAttrIfExists<std::string>("gate_activation") ==
             "sigmoid" &&
         lstm->Op()->GetAttrIfExists<std::string>("cell_activation") ==
             "tanh" &&
         lstm->Op()->GetAttrIfExists<std::string>("candidate_activation") ==
             "tanh");

306
    if (with_fc_bias) {
307
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
308
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
309
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
Y
Yan Chunwei 已提交
310 311
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
312
                   fc_bias, use_mkldnn);
313 314
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
315
          {mul, lstm, elementwise_add, mul_out, BatchGate, BatchCellPreAct});
316
      GraphSafeRemoveNodes(graph, marked_nodes);
317
    } else {
Y
Yan Chunwei 已提交
318 319
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
320
                   nullptr, use_mkldnn);
321
      // Remove unneeded nodes.
322 323
      std::unordered_set<const Node*> marked_nodes(
          {mul, lstm, BatchGate, BatchCellPreAct});
324
      GraphSafeRemoveNodes(graph, marked_nodes);
325
    }
326 327 328 329

    ++fusion_count;
  };

330
  gpd(graph, handler);
331 332 333 334

  return fusion_count;
}

335 336
void MulLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
337

338 339
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
340 341 342 343

  AddStatis(fusion_count);
}

344 345
void FCLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
346

347 348
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
349

350
  AddStatis(fusion_count);
351 352 353 354 355 356
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

357
REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulLstmFusePass);
358
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCLstmFusePass);
359 360 361 362 363

REGISTER_PASS_CAPABILITY(fc_lstm_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
364
            .LE("elementwise_add", 1)
365 366 367 368 369 370 371 372
            .EQ("lstm", 0)
            .EQ("fusion_lstm", 0));
REGISTER_PASS_CAPABILITY(mul_lstm_fuse_pass)
    .AddCombination(
        paddle::framework::compatible::OpVersionComparatorCombination()
            .EQ("mul", 0)
            .EQ("lstm", 0)
            .EQ("fusion_lstm", 0));