fc_lstm_fuse_pass.cc 6.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
T
tensor-tang 已提交
14

15
#include "paddle/fluid/framework/ir/fc_lstm_fuse_pass.h"
T
tensor-tang 已提交
16
#include <string>
17
#include <unordered_set>
T
tensor-tang 已提交
18
#include "paddle/fluid/framework/lod_tensor.h"
19 20 21 22 23

namespace paddle {
namespace framework {
namespace ir {

Y
Yan Chunwei 已提交
24 25 26 27
int BuildFusion(Graph* graph, const std::string& name_scope, Scope* scope,
                bool with_fc_bias) {
  GraphPatternDetector gpd;
  auto* pattern = gpd.mutable_pattern();
28

Y
Yan Chunwei 已提交
29 30
  // Build pattern
  PDNode* x = pattern->NewNode(patterns::PDNodeName(name_scope, "x"))
31 32
                  ->assert_is_op_input("mul")
                  ->assert_var_not_persistable();
Y
Yan Chunwei 已提交
33
  patterns::FC fc_pattern(pattern, name_scope);
34

Y
Yan Chunwei 已提交
35
  // fc_out is a tmp var, will be removed after fuse, so marked as intermediate.
36 37
  auto* fc_out =
      fc_pattern(x, with_fc_bias, /* with_relu */ false)->AsIntermediate();
Y
Yan Chunwei 已提交
38 39
  patterns::LSTM lstm_pattern(pattern, name_scope);
  lstm_pattern(fc_out);
40 41

  // Create New OpDesc
Y
Yan Chunwei 已提交
42 43 44
  auto lstm_creator = [&](Node* lstm, Node* input, Node* weight_x,
                          Node* weight_h, Node* bias, Node* hidden, Node* cell,
                          Node* xx, Node* fc_bias) {
45 46
    OpDesc op_desc;
    op_desc.SetType("fusion_lstm");
Y
Yan Chunwei 已提交
47
#define SET_IN(Key, node__) op_desc.SetInput(#Key, {node__->Name()});
48 49 50 51 52
    SET_IN(X, input);
    SET_IN(WeightX, weight_x);
    SET_IN(WeightH, weight_h);
    SET_IN(Bias, bias);
#undef SET_IN
53 54 55
    if (with_fc_bias) {
      // Add FC-bias with LSTM-bias and create a new weight
      PADDLE_ENFORCE(scope);
L
luotao1 已提交
56
      const std::string& new_bias_var = patterns::UniqueKey("NewBias");
57 58 59
      auto* bias_var = scope->Var(new_bias_var);
      PADDLE_ENFORCE(bias_var);
      auto* bias_tensor = bias_var->GetMutable<framework::LoDTensor>();
Y
Yan Chunwei 已提交
60
      auto* lstm_bias_var = scope->FindVar(bias->Name());
61 62 63 64
      PADDLE_ENFORCE(lstm_bias_var);
      const auto& lstm_bias_tensor = lstm_bias_var->Get<framework::LoDTensor>();
      bias_tensor->Resize(lstm_bias_tensor.dims());

Y
Yan Chunwei 已提交
65
      auto* fc_bias_var = scope->FindVar(fc_bias->Name());
66 67 68 69 70 71 72 73 74 75
      const auto& fc_bias_tensor = fc_bias_var->Get<framework::LoDTensor>();

      auto* data = bias_tensor->mutable_data<float>(platform::CPUPlace());

      for (int i = 0; i < bias_tensor->numel(); i++) {
        data[i] =
            fc_bias_tensor.data<float>()[i] + lstm_bias_tensor.data<float>()[i];
      }
      op_desc.SetInput("Bias", {new_bias_var});
    }
76 77 78

    op_desc.SetInput("H0", {});
    op_desc.SetInput("C0", {});
Y
Yan Chunwei 已提交
79 80 81 82 83
    op_desc.SetOutput("Hidden", {hidden->Name()});
    op_desc.SetOutput("Cell", {cell->Name()});
    op_desc.SetOutput("XX", {xx->Name()});
    op_desc.SetAttr("is_reverse", lstm->Op()->GetAttr("is_reverse"));
    op_desc.SetAttr("use_peepholes", lstm->Op()->GetAttr("use_peepholes"));
T
tensor-tang 已提交
84 85
    // TODO(TJ): get from attr
    op_desc.SetAttr("use_seq", true);
T
tensor-tang 已提交
86

87
// Create temp variables.
Y
Yan Chunwei 已提交
88 89
#define OP_SET_OUT(x)                            \
  const std::string x = patterns::UniqueKey(#x); \
90 91 92 93 94 95
  op_desc.SetOutput(#x, {x});

    OP_SET_OUT(BatchedGate);
    OP_SET_OUT(BatchedCellPreAct);
    OP_SET_OUT(BatchedInput);
    OP_SET_OUT(CheckedCell);
T
tensor-tang 已提交
96 97 98 99 100
    OP_SET_OUT(BatchedCell);
    OP_SET_OUT(BatchedHidden);
    OP_SET_OUT(ReorderedH0);
    OP_SET_OUT(ReorderedC0);
#undef OP_SET_OUT
101 102

    auto* op = graph->CreateOpNode(&op_desc);
103

Y
Yan Chunwei 已提交
104 105 106 107 108
    IR_NODE_LINK_TO(input, op);
    IR_NODE_LINK_TO(weight_x, op);
    IR_NODE_LINK_TO(weight_h, op);
    IR_NODE_LINK_TO(bias, op);
    IR_NODE_LINK_TO(op, hidden);
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

#define IR_NODE(x)                                 \
  VarDesc key_##x(x);                              \
  key_##x.SetPersistable(false);                   \
  auto* node_##x = graph->CreateVarNode(&key_##x); \
  IR_NODE_LINK_TO(op, node_##x);

    IR_NODE(BatchedGate);
    IR_NODE(BatchedCellPreAct);
    IR_NODE(BatchedInput);
    IR_NODE(CheckedCell);
    IR_NODE(BatchedCell);
    IR_NODE(BatchedHidden);
    IR_NODE(ReorderedH0);
    IR_NODE(ReorderedC0);
#undef IR_NODE

126 127 128
    return op;
  };

129
  int fusion_count{0};
130

131 132
  auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph,
                     Graph* g) {
Y
Yan Chunwei 已提交
133 134 135 136
    GET_IR_NODE_FROM_SUBGRAPH(lstm, lstm, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Weight, Weight, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Bias, Bias, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Hidden, Hidden, lstm_pattern);
137 138 139
    GET_IR_NODE_FROM_SUBGRAPH(BatchCellPreAct, BatchCellPreAct, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(BatchGate, BatchGate, lstm_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(Cell, Cell, lstm_pattern);
Y
Yan Chunwei 已提交
140 141
    GET_IR_NODE_FROM_SUBGRAPH(w, w, fc_pattern);
    GET_IR_NODE_FROM_SUBGRAPH(mul, mul, fc_pattern);
142
    if (with_fc_bias) {
143
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, elementwise_add_out, fc_pattern);
Y
Yan Chunwei 已提交
144
      GET_IR_NODE_FROM_SUBGRAPH(fc_bias, bias, fc_pattern);
145
      GET_IR_NODE_FROM_SUBGRAPH(mul_out, mul_out, fc_pattern);
Y
Yan Chunwei 已提交
146 147 148
      GET_IR_NODE_FROM_SUBGRAPH(elementwise_add, elementwise_add, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
                   fc_bias);
149 150
      // Remove unneeded nodes.
      std::unordered_set<const Node*> marked_nodes(
151
          {mul, lstm, elementwise_add, mul_out, BatchGate, BatchCellPreAct});
152
      GraphSafeRemoveNodes(graph, marked_nodes);
153
    } else {
Y
Yan Chunwei 已提交
154 155 156
      GET_IR_NODE_FROM_SUBGRAPH(fc_out, mul_out, fc_pattern);
      lstm_creator(lstm, subgraph.at(x), w, Weight, Bias, Hidden, Cell, fc_out,
                   nullptr);
157
      // Remove unneeded nodes.
158 159
      std::unordered_set<const Node*> marked_nodes(
          {mul, lstm, BatchGate, BatchCellPreAct});
160
      GraphSafeRemoveNodes(graph, marked_nodes);
161
    }
162 163 164 165

    ++fusion_count;
  };

166
  gpd(graph, handler);
167 168 169 170

  return fusion_count;
}

171 172
void MulLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
173

174 175
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), false /*with_fc_bias*/);
176 177 178 179

  AddStatis(fusion_count);
}

180 181
void FCLstmFusePass::ApplyImpl(ir::Graph* graph) const {
  FusePassBase::Init(name_scope_, graph);
182

183 184
  int fusion_count =
      BuildFusion(graph, name_scope_, param_scope(), true /*with_fc_bias*/);
185

186
  AddStatis(fusion_count);
187 188 189 190 191 192
}

}  // namespace ir
}  // namespace framework
}  // namespace paddle

193
REGISTER_PASS(mul_lstm_fuse_pass, paddle::framework::ir::MulLstmFusePass);
194
REGISTER_PASS(fc_lstm_fuse_pass, paddle::framework::ir::FCLstmFusePass);