auto_parallel_gradient_merge.py 14.5 KB
Newer Older
1
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
6
#
7
#     http://www.apache.org/licenses/LICENSE-2.0
8
#
9 10 11 12 13 14 15 16 17 18 19 20
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
from collections import OrderedDict
from typing import List, Tuple, Dict, Any

import paddle
from paddle.framework import core
21
from paddle.fluid import layers
22 23
from paddle.fluid.framework import program_guard, device_guard
from .pass_base import PassBase, PassType, register_pass
24
from paddle.distributed.fleet.meta_optimizers.common import OpRole
25 26 27
from paddle.distributed.auto_parallel.utils import set_var_dist_attr
from paddle.distributed.auto_parallel.utils import naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from paddle.distributed.auto_parallel.process_group import get_world_process_group
28

29
world_process_group = get_world_process_group()
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


def _is_the_optimizer_op(op):
    OP_ROLE_KEY = core.op_proto_and_checker_maker.kOpRoleAttrName()
    return OP_ROLE_KEY in op.attr_names and \
            int(op.all_attrs()[OP_ROLE_KEY]) & int(OpRole.Optimize)


def _remove_and_get_optimizer_op(main_program, dist_context):
    # 1 create tmp block
    # 2 mv optimizer op from global program to tmp block
    # 3 del the op from dist_context
    main_block = main_program.global_block()
    temp_block = main_program._create_block()
    removed_op_idx = []
    optimize_ops_desc = []
46
    skip_ops = ["increment", "elementwise_mod", "equal"]
47
    for idx, op in enumerate(main_block.ops):
48
        if _is_the_optimizer_op(op) and op.type not in skip_ops:
49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71
            # append optimizer op to tmp block
            new_op_desc = temp_block.desc.append_op()
            new_op_desc.copy_from(op.desc)
            optimize_ops_desc.append(new_op_desc)
            removed_op_idx.append(idx)

            # del op from dist_context
            if dist_context:
                dist_context.del_dist_op_for_program(op)

    for idx in removed_op_idx[::-1]:
        main_block._remove_op(idx)

    return optimize_ops_desc


def _remove_op_role_var(param, grad):
    op_maker = core.op_proto_and_checker_maker
    op = grad.op
    if op.has_attr(op_maker.kOpRoleVarAttrName()):
        op._remove_attr(op_maker.kOpRoleVarAttrName())


72
def _get_gm_cond_var(main_program, k_steps, dist_context):
73 74
    main_block = main_program.global_block()
    # Add const var
75 76 77 78 79 80
    k_step_var = layers.create_global_var(name="gradient_merge_k",
                                          shape=[1],
                                          value=int(k_steps),
                                          dtype='int32',
                                          persistable=True,
                                          force_cpu=True)
81
    set_var_dist_attr(dist_context, k_step_var, [-1], world_process_group.ranks)
82

83 84 85 86 87 88
    zero_var = layers.create_global_var(name="gradient_merge_zero",
                                        shape=[1],
                                        value=int(0),
                                        dtype='int32',
                                        persistable=True,
                                        force_cpu=True)
89
    set_var_dist_attr(dist_context, zero_var, [-1], world_process_group.ranks)
90 91

    # Add step var & cond var
92 93 94 95 96 97
    step_var = layers.create_global_var(name="gradient_merge_step",
                                        shape=[1],
                                        value=int(0),
                                        dtype='int32',
                                        persistable=True,
                                        force_cpu=True)
98
    set_var_dist_attr(dist_context, step_var, [-1], world_process_group.ranks)
99

100 101 102
    cond_var = main_block.create_var(name="gradient_merge_cond",
                                     shape=[1],
                                     dtype='bool')
103
    set_var_dist_attr(dist_context, cond_var, [-1], world_process_group.ranks)
104 105

    with device_guard("cpu"):
106 107 108 109 110 111 112 113 114 115 116
        # step_var += 1
        increment_op = main_block.append_op(type='increment',
                                            inputs={'X': [step_var]},
                                            outputs={'Out': [step_var]},
                                            attrs={
                                                'step': float(1.0),
                                                'op_role': OpRole.Optimize
                                            })
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            increment_op, world_process_group.ranks, [-1], dist_context)
        # step_var %= k_step
117 118 119 120 121 122 123 124
        elementwise_mod_op = main_block.append_op(type='elementwise_mod',
                                                  inputs={
                                                      'X': step_var,
                                                      'Y': k_step_var
                                                  },
                                                  outputs={'Out': step_var},
                                                  attrs={
                                                      'axis': -1,
125 126
                                                      'use_mkldnn': False,
                                                      'op_role': OpRole.Optimize
127
                                                  })
128 129
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            elementwise_mod_op, world_process_group.ranks, [-1], dist_context)
130
        # cond_var = (step_var == 0)
131 132 133 134 135
        equal_op = main_block.append_op(type='equal',
                                        inputs={
                                            'X': step_var,
                                            'Y': zero_var
                                        },
136 137
                                        outputs={'Out': cond_var},
                                        attrs={'op_role': OpRole.Optimize})
138 139
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            equal_op, world_process_group.ranks, [-1], dist_context)
140 141 142 143 144

    return cond_var


def _append_gradient_merge_backward_op(
145
        main_program, startup_program, params_grads: List[Tuple[Any, Any]],
146 147
        cond_var_name: str,
        dist_context) -> Tuple[List[Tuple[Any, Any]], Dict[str, Any]]:
148 149 150 151 152 153 154 155 156 157 158
    main_block = main_program.global_block()
    startup_block = startup_program.global_block()

    # step1: remove grad.op's op_role_var
    for param, grad in params_grads:
        assert (
            param.type != core.VarDesc.VarType.SELECTED_ROWS
        ), "SELECTED_ROWS is not supported in GradientMergeOptimizer for now"

        _remove_op_role_var(param, grad)

159 160 161
    # {grad.name: gradient_merge_var.name} to rename opt inputs
    grad_to_gradient_merge = {}
    # {param: gradient_merge_var} to insert scale op and fill_constant op
162 163 164 165 166 167
    new_params_to_grads = []
    # step2: create gradient_merge var and init with 0
    for param, grad in params_grads:
        param_name = param.name
        param_var = main_block.var(param_name)
        assert (param_var is not None)
168 169
        ref_dist_attr = dist_context.get_tensor_dist_attr_for_program(param_var)
        assert ref_dist_attr is not None
170 171 172 173 174
        gradient_merge_var = main_block.create_var(name=param_name +
                                                   "@GRAD@GradientMerge",
                                                   shape=param_var.shape,
                                                   dtype=param_var.dtype,
                                                   persistable=True)
175 176 177 178 179
        ref_process_mesh = ref_dist_attr.process_mesh
        ref_dims_mapping = ref_dist_attr.dims_mapping

        set_var_dist_attr(dist_context, gradient_merge_var, ref_dims_mapping,
                          ref_process_mesh)
180 181 182 183 184 185

        startup_gradient_merge_var = startup_block.create_var(
            name=param_name + "@GRAD@GradientMerge",
            shape=param_var.shape,
            dtype=param_var.dtype,
            persistable=True)
186 187 188 189 190 191 192
        startup_block.append_op(type="fill_constant",
                                outputs={"Out": startup_gradient_merge_var},
                                attrs={
                                    "shape": param_var.shape,
                                    "dtype": param_var.dtype,
                                    "value": float(0),
                                })
193 194

        # grad_merge += grad
195 196 197 198 199 200 201 202
        new_grad_op = main_block.append_op(type="elementwise_add",
                                           inputs={
                                               'X': grad,
                                               'Y': gradient_merge_var
                                           },
                                           outputs={'Out': gradient_merge_var},
                                           attrs={
                                               'axis': -1,
203 204
                                               'use_mkldnn': False,
                                               'op_role': OpRole.Optimize
205
                                           })
206
        new_params_to_grads.append([param, gradient_merge_var])
207
        grad_to_gradient_merge[grad.name] = gradient_merge_var.name
208 209
        naive_set_dist_op_attr_for_program_by_mesh_and_mapping(
            new_grad_op, ref_process_mesh, ref_dims_mapping, dist_context)
210
    return new_params_to_grads, grad_to_gradient_merge
211 212 213


def _create_cond_block_and_update_optimizer(
214
        main_program, cond_var, new_params_to_grads: List[Tuple[Any, Any]],
215
        grad_to_gradient_merge: Dict[str, str], optimize_ops_desc: List[Any],
216 217
        k_steps, avg):

218 219 220 221 222 223 224 225 226 227
    def true_apply_gradient():
        cur_block_idx = main_program.current_block_idx
        cur_block = main_program.current_block()

        # cur_block's forward_block & backward_block is itself
        cur_block._set_forward_block_idx(cur_block_idx)
        op_maker = core.op_proto_and_checker_maker
        if avg:
            for param, new_grad in new_params_to_grads:
                # grad /= k_steps
228 229 230 231 232 233 234 235
                cur_block.append_op(type='scale',
                                    inputs={'X': new_grad},
                                    outputs={'Out': new_grad},
                                    attrs={
                                        'scale': 1.0 / k_steps,
                                        'bias': 0.0,
                                        'bias_after_scale': False
                                    })
236
                new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
237
                                      OpRole.Optimize)
238 239 240 241 242 243 244 245

        # append optimizer ops
        for op_desc in optimize_ops_desc:
            new_op_desc = cur_block.desc.append_op()
            new_op_desc.copy_from(op_desc)

            #update input/output
            for input_name in new_op_desc.input_arg_names():
246 247 248
                if input_name in grad_to_gradient_merge:
                    new_op_desc._rename_input(
                        input_name, grad_to_gradient_merge[input_name])
249 250

            for output_name in new_op_desc.output_arg_names():
251 252 253
                if output_name in grad_to_gradient_merge:
                    new_op_desc._rename_output(
                        output_name, grad_to_gradient_merge[output_name])
254 255 256 257 258 259

            # remove op_role_var
            if new_op_desc.has_attr(op_maker.kOpRoleVarAttrName()):
                new_op_desc.remove_attr(op_maker.kOpRoleVarAttrName())

            # op's update Grad
260
            if core.grad_var_suffix() in new_op_desc.input_arg_names():
261 262 263 264 265 266 267 268 269 270
                grad_value = new_op_desc.input("Grad")[0]
                # TODO FIXME(xym) support fp16
                grad_merge_value = grad_value + '@GradientMerge'
                new_op_desc.set_input("Grad", [grad_merge_value])

        main_program.global_block()._sync_with_cpp()
        cur_block._sync_with_cpp()

        # clear gradient_merge_vars
        for param, new_grad in new_params_to_grads:
271 272 273 274
            layers.fill_constant(shape=new_grad.shape,
                                 dtype=new_grad.dtype,
                                 value=0.0,
                                 out=new_grad)
275 276 277 278
            new_grad.op._set_attr(op_maker.kOpRoleAttrName(),
                                  op_maker.OpRole.Optimize)

    layers.cond(cond_var, true_fn=true_apply_gradient, false_fn=None)
279 280
    cond_op = main_program.global_block().ops[-1]
    cond_op._set_attr('op_role', OpRole.Optimize)
281 282 283 284 285


def parse_program(main_program, startup_program, params_grads, k_steps, avg,
                  dist_context):
    # 1 create gradient_merge_cond
286
    cond_var = _get_gm_cond_var(main_program, k_steps, dist_context)
287 288 289 290 291 292 293 294

    # 2 remove optimizer_op from main_program
    optimize_ops_desc = _remove_and_get_optimizer_op(main_program, dist_context)

    # back to block 0
    main_program._rollback()

    # 3 append gradient merge backward op to main_program
295
    new_params_to_grads, grad_to_gradient_merge = _append_gradient_merge_backward_op(
296 297
        main_program, startup_program, params_grads, cond_var.name,
        dist_context)
298 299

    # 4 create ConditionalBlock and append gradient merge optimizer ops
300 301
    _create_cond_block_and_update_optimizer(main_program, cond_var,
                                            new_params_to_grads,
302
                                            grad_to_gradient_merge,
303
                                            optimize_ops_desc, k_steps, avg)
304 305 306 307


@register_pass("auto_parallel_gradient_merge_pass")
class GradientMergePass(PassBase):
308

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    def __init__(self):
        super(GradientMergePass, self).__init__()
        self.set_attr("k_steps", -1)
        self.set_attr("avg", True)

    def _check_self(self):
        if self.get_attr("k_steps") < 1:
            return False
        return True

    def _check_conflict(self, other_pass):
        return True

    def _type(self):
        return PassType.COMM_OPT

    def _apply_single_impl(self, main_program, startup_program, context):
        k_steps = self.get_attr("k_steps", -1)
        avg = self.get_attr("avg", False)
        dist_context = self.get_attr("dist_context")
        params_grads = self.get_attr("params_grads")
        with paddle.static.program_guard(main_program, startup_program):
            parse_program(main_program, startup_program, params_grads, k_steps,
                          avg, dist_context)

        main_program._sync_with_cpp()