Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
c22e1123
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
c22e1123
编写于
6月 06, 2022
作者:
Z
zhaoyingli
提交者:
GitHub
6月 06, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
[AutoParallel] fix gradient merge optimize parse (#43169)
* fix gradient merge * bug fix * update annotation
上级
398b96c6
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
66 addition
and
100 deletion
+66
-100
python/paddle/distributed/auto_parallel/parallelizer_v2.py
python/paddle/distributed/auto_parallel/parallelizer_v2.py
+3
-3
python/paddle/distributed/passes/auto_parallel_gradient_merge.py
...paddle/distributed/passes/auto_parallel_gradient_merge.py
+38
-32
python/paddle/fluid/tests/unittests/distributed_passes/CMakeLists.txt
...e/fluid/tests/unittests/distributed_passes/CMakeLists.txt
+1
-1
python/paddle/fluid/tests/unittests/distributed_passes/test_auto_parallel_gradient_merge_pass.py
...tributed_passes/test_auto_parallel_gradient_merge_pass.py
+24
-64
未找到文件。
python/paddle/distributed/auto_parallel/parallelizer_v2.py
浏览文件 @
c22e1123
...
...
@@ -148,7 +148,7 @@ class Parallelizer:
config
)
auto_parallel_recompute_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_
dist
_context
)
self
.
_
pass
_context
)
def
_apply_post_optimization
(
self
,
main_program
,
startup_program
,
rank
,
params_grads
):
...
...
@@ -162,7 +162,7 @@ class Parallelizer:
auto_parallel_sharding_pass
=
new_pass
(
"auto_parallel_sharding"
,
config
)
auto_parallel_sharding_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_
dist
_context
)
self
.
_
pass
_context
)
if
self
.
_strategy
.
gradient_merge
:
config
=
copy
.
deepcopy
(
self
.
_strategy
.
gradient_merge_configs
)
...
...
@@ -172,4 +172,4 @@ class Parallelizer:
"auto_parallel_gradient_merge_pass"
,
config
)
auto_parallel_gradient_merge_pass
.
apply
([
main_program
],
[
startup_program
],
self
.
_
dist
_context
)
self
.
_
pass
_context
)
python/paddle/distributed/passes/auto_parallel_gradient_merge.py
浏览文件 @
c22e1123
...
...
@@ -18,10 +18,10 @@ from typing import List, Tuple, Dict, Any
import
paddle
from
paddle.framework
import
core
from
paddle.fluid
import
layers
from
paddle.fluid.framework
import
program_guard
,
device_guard
from
paddle.fluid
import
unique_name
,
layers
from
paddle.fluid.clip
import
append_gradient_clip_ops
from
.pass_base
import
PassBase
,
PassType
,
register_pass
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
from
paddle.distributed.auto_parallel.utils
import
set_var_dist_attr
from
paddle.distributed.auto_parallel.utils
import
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
from
paddle.distributed.auto_parallel.process_group
import
get_world_process_group
...
...
@@ -29,16 +29,8 @@ from paddle.distributed.auto_parallel.process_group import get_world_process_gro
world_process_group
=
get_world_process_group
()
def
_is_the_backward_op
(
op
):
OP_ROLE_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
return
OP_ROLE_KEY
in
op
.
attr_names
and
\
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
&
int
(
OpRole
.
Backward
)
def
_is_the_optimizer_op
(
op
):
OP_ROLE_KEY
=
core
.
op_proto_and_checker_maker
.
kOpRoleAttrName
()
OpRole
=
core
.
op_proto_and_checker_maker
.
OpRole
return
OP_ROLE_KEY
in
op
.
attr_names
and
\
int
(
op
.
all_attrs
()[
OP_ROLE_KEY
])
&
int
(
OpRole
.
Optimize
)
...
...
@@ -47,13 +39,13 @@ def _remove_and_get_optimizer_op(main_program, dist_context):
# 1 create tmp block
# 2 mv optimizer op from global program to tmp block
# 3 del the op from dist_context
from
paddle.distributed.fleet.meta_optimizers.common
import
OpRole
main_block
=
main_program
.
global_block
()
temp_block
=
main_program
.
_create_block
()
removed_op_idx
=
[]
optimize_ops_desc
=
[]
skip_ops
=
[
"increment"
,
"elementwise_mod"
,
"equal"
]
for
idx
,
op
in
enumerate
(
main_block
.
ops
):
if
_is_the_optimizer_op
(
op
):
if
_is_the_optimizer_op
(
op
)
and
op
.
type
not
in
skip_ops
:
# append optimizer op to tmp block
new_op_desc
=
temp_block
.
desc
.
append_op
()
new_op_desc
.
copy_from
(
op
.
desc
)
...
...
@@ -111,8 +103,17 @@ def _get_gm_cond_var(main_program, k_steps, dist_context):
set_var_dist_attr
(
dist_context
,
cond_var
,
[
-
1
],
world_process_group
.
ranks
)
with
device_guard
(
"cpu"
):
# step_var = (step_var + 1) % k_step
layers
.
increment
(
x
=
step_var
,
value
=
1.0
,
in_place
=
True
)
# step_var += 1
increment_op
=
main_block
.
append_op
(
type
=
'increment'
,
inputs
=
{
'X'
:
[
step_var
]},
outputs
=
{
'Out'
:
[
step_var
]},
attrs
=
{
'step'
:
float
(
1.0
),
'op_role'
:
OpRole
.
Optimize
})
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
increment_op
,
world_process_group
.
ranks
,
[
-
1
],
dist_context
)
# step_var %= k_step
elementwise_mod_op
=
main_block
.
append_op
(
type
=
'elementwise_mod'
,
inputs
=
{
'X'
:
step_var
,
...
...
@@ -121,18 +122,19 @@ def _get_gm_cond_var(main_program, k_steps, dist_context):
outputs
=
{
'Out'
:
step_var
},
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
'use_mkldnn'
:
False
,
'op_role'
:
OpRole
.
Optimize
})
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
elementwise_mod_op
,
world_process_group
.
ranks
,
[
-
1
],
dist_context
)
# cond_var = (step_var == 0)
equal_op
=
main_block
.
append_op
(
type
=
'equal'
,
inputs
=
{
'X'
:
step_var
,
'Y'
:
zero_var
},
outputs
=
{
'Out'
:
cond_var
})
outputs
=
{
'Out'
:
cond_var
},
attrs
=
{
'op_role'
:
OpRole
.
Optimize
})
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
equal_op
,
world_process_group
.
ranks
,
[
-
1
],
dist_context
)
...
...
@@ -154,7 +156,9 @@ def _append_gradient_merge_backward_op(
_remove_op_role_var
(
param
,
grad
)
param_to_gradient_merge
=
{}
# {grad.name: gradient_merge_var.name} to rename opt inputs
grad_to_gradient_merge
=
{}
# {param: gradient_merge_var} to insert scale op and fill_constant op
new_params_to_grads
=
[]
# step2: create gradient_merge var and init with 0
for
param
,
grad
in
params_grads
:
...
...
@@ -168,7 +172,6 @@ def _append_gradient_merge_backward_op(
shape
=
param_var
.
shape
,
dtype
=
param_var
.
dtype
,
persistable
=
True
)
param_to_gradient_merge
[
param_name
]
=
gradient_merge_var
ref_process_mesh
=
ref_dist_attr
.
process_mesh
ref_dims_mapping
=
ref_dist_attr
.
dims_mapping
...
...
@@ -197,17 +200,19 @@ def _append_gradient_merge_backward_op(
outputs
=
{
'Out'
:
gradient_merge_var
},
attrs
=
{
'axis'
:
-
1
,
'use_mkldnn'
:
False
'use_mkldnn'
:
False
,
'op_role'
:
OpRole
.
Optimize
})
new_params_to_grads
.
append
([
param
,
gradient_merge_var
])
grad_to_gradient_merge
[
grad
.
name
]
=
gradient_merge_var
.
name
naive_set_dist_op_attr_for_program_by_mesh_and_mapping
(
new_grad_op
,
ref_process_mesh
,
ref_dims_mapping
,
dist_context
)
return
new_params_to_grads
,
param
_to_gradient_merge
return
new_params_to_grads
,
grad
_to_gradient_merge
def
_create_cond_block_and_update_optimizer
(
main_program
,
cond_var
,
new_params_to_grads
:
List
[
Tuple
[
Any
,
Any
]],
param_to_gradient_merge
:
Dict
[
str
,
Any
],
optimize_ops_desc
:
List
[
Any
],
grad_to_gradient_merge
:
Dict
[
str
,
str
],
optimize_ops_desc
:
List
[
Any
],
k_steps
,
avg
):
def
true_apply_gradient
():
...
...
@@ -229,7 +234,7 @@ def _create_cond_block_and_update_optimizer(
'bias_after_scale'
:
False
})
new_grad
.
op
.
_set_attr
(
op_maker
.
kOpRoleAttrName
(),
op_maker
.
OpRole
.
Optimize
)
OpRole
.
Optimize
)
# append optimizer ops
for
op_desc
in
optimize_ops_desc
:
...
...
@@ -238,14 +243,14 @@ def _create_cond_block_and_update_optimizer(
#update input/output
for
input_name
in
new_op_desc
.
input_arg_names
():
if
input_name
in
new_params_to_grads
:
new_op_desc
.
_rename_input
(
input_name
,
new_params_to_grads
[
input_name
])
if
input_name
in
grad_to_gradient_merge
:
new_op_desc
.
_rename_input
(
input_name
,
grad_to_gradient_merge
[
input_name
])
for
output_name
in
new_op_desc
.
output_arg_names
():
if
output_name
in
new_params_to_grads
:
new_op_desc
.
_rename_output
(
output_name
,
new_params_to_grads
[
output_name
])
if
output_name
in
grad_to_gradient_merge
:
new_op_desc
.
_rename_output
(
output_name
,
grad_to_gradient_merge
[
output_name
])
# remove op_role_var
if
new_op_desc
.
has_attr
(
op_maker
.
kOpRoleVarAttrName
()):
...
...
@@ -271,6 +276,8 @@ def _create_cond_block_and_update_optimizer(
op_maker
.
OpRole
.
Optimize
)
layers
.
cond
(
cond_var
,
true_fn
=
true_apply_gradient
,
false_fn
=
None
)
cond_op
=
main_program
.
global_block
().
ops
[
-
1
]
cond_op
.
_set_attr
(
'op_role'
,
OpRole
.
Optimize
)
def
parse_program
(
main_program
,
startup_program
,
params_grads
,
k_steps
,
avg
,
...
...
@@ -285,14 +292,14 @@ def parse_program(main_program, startup_program, params_grads, k_steps, avg,
main_program
.
_rollback
()
# 3 append gradient merge backward op to main_program
new_params_to_grads
,
param
_to_gradient_merge
=
_append_gradient_merge_backward_op
(
new_params_to_grads
,
grad
_to_gradient_merge
=
_append_gradient_merge_backward_op
(
main_program
,
startup_program
,
params_grads
,
cond_var
.
name
,
dist_context
)
# 4 create ConditionalBlock and append gradient merge optimizer ops
_create_cond_block_and_update_optimizer
(
main_program
,
cond_var
,
new_params_to_grads
,
param
_to_gradient_merge
,
grad
_to_gradient_merge
,
optimize_ops_desc
,
k_steps
,
avg
)
...
...
@@ -303,7 +310,6 @@ class GradientMergePass(PassBase):
super
(
GradientMergePass
,
self
).
__init__
()
self
.
set_attr
(
"k_steps"
,
-
1
)
self
.
set_attr
(
"avg"
,
True
)
self
.
set_attr
(
"inner_optimizer"
,
None
)
def
_check_self
(
self
):
if
self
.
get_attr
(
"k_steps"
)
<
1
:
...
...
python/paddle/fluid/tests/unittests/distributed_passes/CMakeLists.txt
浏览文件 @
c22e1123
...
...
@@ -14,12 +14,12 @@ if((NOT WITH_GPU)
list
(
REMOVE_ITEM TEST_OPS
"test_dist_fuse_momentum_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_dist_fuse_relu_depthwise_conv_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_dist_fuse_sgd_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_dist_gradient_merge_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_dist_inplace_addto_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_auto_parallel_amp_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_auto_parallel_recompute_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_auto_parallel_sharding_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_auto_parallel_fp16_pass"
)
list
(
REMOVE_ITEM TEST_OPS
"test_auto_parallel_gradient_merge_pass"
)
endif
()
foreach
(
TEST_OP
${
TEST_OPS
}
)
...
...
python/paddle/fluid/tests/unittests/distributed_passes/test_
dist
_gradient_merge_pass.py
→
python/paddle/fluid/tests/unittests/distributed_passes/test_
auto_parallel
_gradient_merge_pass.py
浏览文件 @
c22e1123
...
...
@@ -25,20 +25,14 @@ import paddle.nn as nn
import
paddle.utils
as
utils
import
paddle.static
as
static
import
paddle.nn.functional
as
F
import
paddle.distributed.fleet
as
fleet
import
paddle.distributed.auto_parallel
as
auto
from
paddle.fluid.initializer
import
NumpyArrayInitializer
from
paddle.distributed.passes
import
new_pass
,
PassManager
,
PassContext
import
paddle.distributed.fleet
as
fleet
from
dist_pass_test_base
import
DistPassTestBase
from
paddle.distributed.auto_parallel.dist_context
import
DistributedContext
from
paddle.fluid.initializer
import
NumpyArrayInitializer
from
auto_parallel_pass_test_base
import
AutoPallelPassTestBase
logging
.
getLogger
().
setLevel
(
logging
.
INFO
)
paddle
.
enable_static
()
_global_parallel_strategy
=
None
_global_process_mesh
=
None
#np.set_printoptions(suppress=True)
class
MLPLayer
(
nn
.
Layer
):
...
...
@@ -103,13 +97,11 @@ class MLPLayer(nn.Layer):
def
mlp_forward
(
input
,
label
,
hidden_size
):
if
_global_parallel_strategy
==
"dp"
:
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
_global_process_mesh
,
"dims_mapping"
:
[
0
,
-
1
]
})
auto
.
shard_tensor
(
input
,
dist_attr
=
{
"process_mesh"
:
[
0
],
"dims_mapping"
:
[
-
1
,
-
1
]
})
mlp
=
MLPLayer
(
hidden_size
=
hidden_size
,
intermediate_size
=
4
*
hidden_size
,
initializer_range
=
0.02
)
...
...
@@ -119,40 +111,33 @@ def mlp_forward(input, label, hidden_size):
return
loss
class
TestGradientMergePass
(
Dist
PassTestBase
):
class
TestGradientMergePass
(
AutoPallel
PassTestBase
):
def
init
(
self
):
self
.
_params_grads
=
None
self
.
_config
=
{
"k_steps"
:
4
,
"avg"
:
True
}
#self._config["dist_context"] = DistributedContext()
def
apply_passes
(
self
,
main_prog
,
startup_prog
):
#self._config["params_grads"] = self._params_grads
#pass_context = PassContext()
#auto_parallel_gradient_merge_pass = new_pass(
# "auto_parallel_gradient_merge_pass", self._config)
#auto_parallel_gradient_merge_pass.apply([main_prog], [startup_prog],
# pass_context)
paddle
.
seed
(
2022
)
random
.
seed
(
2022
)
np
.
random
.
seed
(
2022
)
def
apply_passes
(
self
):
dist_strategy
=
fleet
.
DistributedStrategy
()
dist_strategy
.
semi_auto
=
True
dist_strategy
.
gradient_merge
=
True
dist_strategy
.
gradient_merge_configs
=
{
"k_steps"
:
4
,
"avg"
:
True
}
dist_strategy
.
semi_auto
=
True
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
def
test_result
(
self
):
no_pass_rets
=
self
.
_distributed_launch
(
model
=
None
,
apply_pass
=
False
,
gpus
=
[
0
],
gradient_merge
=
False
,
batch_size
=
32
,
hidden_size
=
128
,
max_step
=
2
)
pass_rets
=
self
.
_distributed_launch
(
model
=
None
,
apply_pass
=
True
,
gpus
=
[
0
],
gradient_merge
=
True
,
batch_size
=
8
,
hidden_size
=
128
,
max_step
=
8
)
"""
# avg loss for gradient_merge pass
avg_loss
=
0
pass_avg_ret_list
=
[]
...
...
@@ -167,40 +152,16 @@ class TestGradientMergePass(DistPassTestBase):
for
no_pass_ret
,
pass_ret
in
zip
(
no_pass_rets
[
0
],
pass_avg_ret_list
):
print
(
f
"no_pass_ret=
{
no_pass_ret
}
, pass_ret=
{
pass_ret
}
"
)
self
.
assertTrue
(
np.isclose(
no_pass_ret,
pass_ret,
rtol=self.rtol,
atol=self.atol,
equal_nan=self.equal_nan))
"""
def
get_model
(
self
,
place
,
gradient_merge
,
batch_size
,
max_step
):
paddle
.
seed
(
2021
)
random
.
seed
(
2021
)
np
.
random
.
seed
(
2021
)
np
.
isclose
(
no_pass_ret
,
pass_ret
,
rtol
=
self
.
rtol
,
atol
=
self
.
atol
,
equal_nan
=
self
.
equal_nan
))
hidden_size
=
128
global
_global_parallel_strategy
global
_global_process_mesh
world_size
=
paddle
.
distributed
.
get_world_size
()
if
world_size
==
1
:
_global_parallel_strategy
=
"dp"
_global_process_mesh
=
auto
.
ProcessMesh
([
0
])
elif
world_size
==
2
:
_global_parallel_strategy
=
"dp"
_global_process_mesh
=
auto
.
ProcessMesh
([
0
,
1
])
def
get_model
(
self
,
place
,
batch_size
,
hidden_size
,
max_step
):
train_program
=
static
.
Program
()
startup_program
=
static
.
Program
()
dist_strategy
=
fleet
.
DistributedStrategy
()
dist_strategy
.
semi_auto
=
True
#if gradient_merge:
# dist_strategy.gradient_merge = True
# dist_strategy.gradient_merge_configs = {"k_steps": 4, "avg": True}
fleet
.
init
(
is_collective
=
True
,
strategy
=
dist_strategy
)
with
static
.
program_guard
(
train_program
,
startup_program
),
\
utils
.
unique_name
.
guard
():
input
=
static
.
data
(
name
=
"input"
,
...
...
@@ -212,8 +173,7 @@ class TestGradientMergePass(DistPassTestBase):
input
.
stop_gradient
=
False
loss
=
mlp_forward
(
input
,
label
,
hidden_size
)
optimizer
=
paddle
.
fluid
.
optimizer
.
SGDOptimizer
(
learning_rate
=
0.01
)
#optimizer = paddle.fluid.optimizer.Adam(learning_rate=0.01)
optimizer
=
paddle
.
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.01
)
optimizer
=
fleet
.
distributed_optimizer
(
optimizer
)
_
,
self
.
_params_grads
,
dist_startup_prog
,
dist_main_prog
=
optimizer
.
minimize
(
loss
,
startup_program
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录