test_multiprocess_dataloader_dynamic.py 6.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import time
import unittest
18 19 20
import numpy as np
import paddle
from paddle.nn import Linear
21

22
import numpy as np
23 24
from test_multiprocess_dataloader_static import (
    BATCH_SIZE,
25 26
    CLASS_NUM,
    EPOCH_NUM,
27 28
    IMAGE_SIZE,
    SAMPLE_NUM,
29 30 31
    RandomBatchedDataset,
    RandomDataset,
    prepare_places,
32
)
33

34 35 36
import paddle.fluid as fluid
from paddle.io import DataLoader

37 38 39

class SimpleFCNet(fluid.dygraph.Layer):
    def __init__(self):
40
        super().__init__()
41

42 43
        param_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Constant(value=0.8)
44
        )
45 46
        bias_attr = paddle.ParamAttr(
            initializer=paddle.nn.initializer.Constant(value=0.5)
47
        )
48 49 50 51
        self._fcs = []
        in_channel = IMAGE_SIZE
        for hidden_size in [10, 20, 30]:
            self._fcs.append(
52 53 54
                Linear(
                    in_channel,
                    hidden_size,
55
                    weight_attr=param_attr,
56 57 58
                    bias_attr=bias_attr,
                )
            )
59
            self._fcs.append(paddle.nn.Tanh())
60 61
            in_channel = hidden_size
        self._fcs.append(
62 63 64
            Linear(
                in_channel,
                CLASS_NUM,
65
                weight_attr=param_attr,
66 67 68
                bias_attr=bias_attr,
            )
        )
69
        self._fcs.append(paddle.nn.Softmax())
70 71 72 73 74 75 76 77 78

    def forward(self, image):
        out = image
        for fc in self._fcs:
            out = fc(out)
        return out


class TestDygraphDataLoader(unittest.TestCase):
K
Kaipeng Deng 已提交
79
    def run_main(self, num_workers, places, persistent_workers):
80 81 82 83 84 85 86
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        with fluid.dygraph.guard(places[0]):
            fc_net = SimpleFCNet()
            optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
87 88 89 90 91 92 93
            dataloader = DataLoader(
                dataset,
                num_workers=num_workers,
                batch_size=BATCH_SIZE,
                drop_last=True,
                persistent_workers=persistent_workers,
            )
94 95 96 97 98
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            step_list = []
            loss_list = []
            start_t = time.time()
99
            for _ in range(EPOCH_NUM):
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
                step = 0
                for image, label in dataloader():
                    out = fc_net(image)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.reduce_mean(loss)
                    avg_loss.backward()
                    optimizer.minimize(avg_loss)
                    fc_net.clear_gradients()

                    loss_list.append(np.mean(avg_loss.numpy()))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
117
            "loss": np.array(loss_list),
118 119 120 121 122 123 124
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
        # dynamic graph do not run with_data_parallel
        for p in prepare_places(False):
K
Kaipeng Deng 已提交
125 126 127
            for persistent_workers in [False, True]:
                results = []
                for num_workers in [0, 2]:
128 129 130 131 132 133
                    print(
                        self.__class__.__name__,
                        p,
                        num_workers,
                        persistent_workers,
                    )
K
Kaipeng Deng 已提交
134
                    sys.stdout.flush()
135 136 137 138 139
                    ret = self.run_main(
                        num_workers=num_workers,
                        places=p,
                        persistent_workers=persistent_workers,
                    )
K
Kaipeng Deng 已提交
140 141
                    results.append(ret)
                diff = np.max(
142 143 144
                    np.abs(results[0]['loss'] - results[1]['loss'])
                    / np.abs(results[0]['loss'])
                )
K
Kaipeng Deng 已提交
145
                self.assertLess(diff, 1e-2)
146 147


148
class TestDygraphDataLoaderWithBatchedDataset(TestDygraphDataLoader):
K
Kaipeng Deng 已提交
149
    def run_main(self, num_workers, places, persistent_workers):
150 151 152 153 154 155 156
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        with fluid.dygraph.guard(places[0]):
            fc_net = SimpleFCNet()
            optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
157 158 159 160 161 162 163
            dataloader = DataLoader(
                dataset,
                num_workers=num_workers,
                batch_size=None,
                drop_last=True,
                persistent_workers=persistent_workers,
            )
164 165 166 167 168
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            step_list = []
            loss_list = []
            start_t = time.time()
169
            for _ in range(EPOCH_NUM):
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
                step = 0
                for image, label in dataloader():
                    out = fc_net(image)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.reduce_mean(loss)
                    avg_loss.backward()
                    optimizer.minimize(avg_loss)
                    fc_net.clear_gradients()

                    loss_list.append(np.mean(avg_loss.numpy()))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
187
            "loss": np.array(loss_list),
188 189 190 191 192
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


193 194
if __name__ == '__main__':
    unittest.main()