test_multiprocess_dataloader_dynamic.py 6.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import sys
import time
import unittest
import numpy as np

import paddle.fluid as fluid
21
from paddle.io import DataLoader
22 23
from paddle.fluid.dygraph.nn import Linear

24
from test_multiprocess_dataloader_static import RandomDataset, RandomBatchedDataset, prepare_places
25
from test_multiprocess_dataloader_static import EPOCH_NUM, BATCH_SIZE, IMAGE_SIZE, SAMPLE_NUM, CLASS_NUM
26 27 28


class SimpleFCNet(fluid.dygraph.Layer):
29

30 31 32 33 34 35 36 37 38 39 40
    def __init__(self):
        super(SimpleFCNet, self).__init__()

        param_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.8))
        bias_attr = fluid.ParamAttr(initializer=fluid.initializer.Constant(
            value=0.5))
        self._fcs = []
        in_channel = IMAGE_SIZE
        for hidden_size in [10, 20, 30]:
            self._fcs.append(
41 42 43 44 45
                Linear(in_channel,
                       hidden_size,
                       act='tanh',
                       param_attr=param_attr,
                       bias_attr=bias_attr))
46 47
            in_channel = hidden_size
        self._fcs.append(
48 49 50 51 52
            Linear(in_channel,
                   CLASS_NUM,
                   act='softmax',
                   param_attr=param_attr,
                   bias_attr=bias_attr))
53 54 55 56 57 58 59 60 61

    def forward(self, image):
        out = image
        for fc in self._fcs:
            out = fc(out)
        return out


class TestDygraphDataLoader(unittest.TestCase):
62

K
Kaipeng Deng 已提交
63
    def run_main(self, num_workers, places, persistent_workers):
64 65 66 67 68 69 70
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        with fluid.dygraph.guard(places[0]):
            fc_net = SimpleFCNet()
            optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())

            dataset = RandomDataset(SAMPLE_NUM, CLASS_NUM)
71 72 73 74 75
            dataloader = DataLoader(dataset,
                                    num_workers=num_workers,
                                    batch_size=BATCH_SIZE,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
76 77 78 79 80
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            step_list = []
            loss_list = []
            start_t = time.time()
81
            for _ in range(EPOCH_NUM):
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
                step = 0
                for image, label in dataloader():
                    out = fc_net(image)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.reduce_mean(loss)
                    avg_loss.backward()
                    optimizer.minimize(avg_loss)
                    fc_net.clear_gradients()

                    loss_list.append(np.mean(avg_loss.numpy()))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret

    def test_main(self):
        # dynamic graph do not run with_data_parallel
        for p in prepare_places(False):
K
Kaipeng Deng 已提交
107 108 109 110 111 112
            for persistent_workers in [False, True]:
                results = []
                for num_workers in [0, 2]:
                    print(self.__class__.__name__, p, num_workers,
                          persistent_workers)
                    sys.stdout.flush()
113 114 115
                    ret = self.run_main(num_workers=num_workers,
                                        places=p,
                                        persistent_workers=persistent_workers)
K
Kaipeng Deng 已提交
116 117 118 119 120
                    results.append(ret)
                diff = np.max(
                    np.abs(results[0]['loss'] - results[1]['loss']) /
                    np.abs(results[0]['loss']))
                self.assertLess(diff, 1e-2)
121 122


123
class TestDygraphDataLoaderWithBatchedDataset(TestDygraphDataLoader):
124

K
Kaipeng Deng 已提交
125
    def run_main(self, num_workers, places, persistent_workers):
126 127 128 129 130 131 132
        fluid.default_startup_program().random_seed = 1
        fluid.default_main_program().random_seed = 1
        with fluid.dygraph.guard(places[0]):
            fc_net = SimpleFCNet()
            optimizer = fluid.optimizer.Adam(parameter_list=fc_net.parameters())

            dataset = RandomBatchedDataset(SAMPLE_NUM, CLASS_NUM)
133 134 135 136 137
            dataloader = DataLoader(dataset,
                                    num_workers=num_workers,
                                    batch_size=None,
                                    drop_last=True,
                                    persistent_workers=persistent_workers)
138 139 140 141 142
            assert len(dataloader) == int(SAMPLE_NUM / BATCH_SIZE)

            step_list = []
            loss_list = []
            start_t = time.time()
143
            for _ in range(EPOCH_NUM):
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
                step = 0
                for image, label in dataloader():
                    out = fc_net(image)
                    loss = fluid.layers.cross_entropy(out, label)
                    avg_loss = fluid.layers.reduce_mean(loss)
                    avg_loss.backward()
                    optimizer.minimize(avg_loss)
                    fc_net.clear_gradients()

                    loss_list.append(np.mean(avg_loss.numpy()))
                    step += 1
                step_list.append(step)

        end_t = time.time()
        ret = {
            "time": end_t - start_t,
            "step": step_list,
            "loss": np.array(loss_list)
        }
        print("time cost", ret['time'], 'step_list', ret['step'])
        return ret


167 168
if __name__ == '__main__':
    unittest.main()