trt_dynamic_shape_test.cc 8.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <glog/logging.h>
#include <gtest/gtest.h>
17
#include "gflags/gflags.h"
18 19 20 21 22 23

#include "paddle/fluid/inference/tests/api/trt_test_helper.h"

namespace paddle {
namespace inference {

24 25
void TestDynamic(bool with_dynamic = true, bool delete_cache = true,
                 bool delete_conv_bn = false) {
26 27
  std::string model_dir =
      FLAGS_infer_model + "/conv_bn_swish_split_gelu/conv_bn_swish_split_gelu";
28 29 30 31 32 33

  std::string opt_cache_dir = model_dir + "/my_cache";
  if (delete_cache) {
    delete_cache_files(opt_cache_dir);
  }

34 35
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
36 37 38 39 40 41 42
  std::string buffer_prog, buffer_param;
  ReadBinaryFile(model_dir + "/model", &buffer_prog);
  ReadBinaryFile(model_dir + "/params", &buffer_param);
  config.SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0],
                        buffer_param.size());
  config.SetOptimCacheDir(opt_cache_dir);

43 44
  config.SwitchUseFeedFetchOps(false);
  // Set the input's min, max, opt shape
45
  config.EnableTensorRtEngine(1 << 30, 1, 1,
46 47 48 49
                              AnalysisConfig::Precision::kFloat32, true, true);
  if (delete_conv_bn) {
    config.pass_builder()->DeletePass("conv_bn_fuse_pass");
  }
50 51 52 53 54 55 56
  if (with_dynamic) {
    std::map<std::string, std::vector<int>> min_input_shape = {
        {"image", {1, 1, 3, 3}}};
    std::map<std::string, std::vector<int>> max_input_shape = {
        {"image", {1, 1, 10, 10}}};
    std::map<std::string, std::vector<int>> opt_input_shape = {
        {"image", {1, 1, 3, 3}}};
57

58 59 60
    config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                  opt_input_shape);
  }
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
  auto predictor = CreatePaddlePredictor(config);
  auto input_names = predictor->GetInputNames();
  int channels = 1;
  int height = 3;
  int width = 3;
  int input_num = channels * height * width * 1;

  float *input = new float[input_num];
  memset(input, 0, input_num * sizeof(float));
  auto input_t = predictor->GetInputTensor(input_names[0]);
  input_t->Reshape({1, channels, height, width});
  input_t->copy_from_cpu(input);

  ASSERT_TRUE(predictor->ZeroCopyRun());

  std::vector<float> out_data;
  auto output_names = predictor->GetOutputNames();
  auto output_t = predictor->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_t->shape();
  int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                std::multiplies<int>());
  out_data.resize(out_num);
  output_t->copy_to_cpu(out_data.data());
}

86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
void TestDynamic2() {
  std::string model_dir =
      FLAGS_infer_model + "/complex_model_dynamic/complex_model_dynamic2";
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  config.SetModel(model_dir + "/model", model_dir + "/params");
  config.SwitchUseFeedFetchOps(false);
  // Set the input's min, max, opt shape
  int batch_size = 1;
  std::map<std::string, std::vector<int>> min_input_shape = {
      {"image", {1, 3, 3, 3}}, {"in1", {1, 2, 1, 1}}, {"in2", {1, 2, 1, 1}}};
  std::map<std::string, std::vector<int>> max_input_shape = {
      {"image", {1, 3, 10, 10}}, {"in1", {1, 2, 1, 1}}, {"in2", {1, 2, 1, 1}}};
  std::map<std::string, std::vector<int>> opt_input_shape = {
      {"image", {1, 3, 5, 5}}, {"in1", {1, 2, 1, 1}}, {"in2", {1, 2, 1, 1}}};
  config.EnableTensorRtEngine(1 << 30, batch_size, 0,
                              AnalysisConfig::Precision::kFloat32, false, true);

  config.SetTRTDynamicShapeInfo(min_input_shape, max_input_shape,
                                opt_input_shape);

  auto predictor = CreatePaddlePredictor(config);
  int channels = 3;
  int height = 5;
  int width = 5;
  int input_num = channels * height * width * 1;

  float *input = new float[input_num];
  memset(input, 0, input_num * sizeof(float));
  auto input_names = predictor->GetInputNames();
  auto input_t = predictor->GetInputTensor(input_names[0]);
  input_t->Reshape({batch_size, channels, height, width});
  input_t->copy_from_cpu(input);

  auto input_t1 = predictor->GetInputTensor(input_names[1]);
  input_t1->Reshape({batch_size, 2, 1, 1});
  std::vector<float> first;
  for (int i = 0; i < batch_size * 2; i++) first.push_back(1.0);
  input_t1->copy_from_cpu(first.data());

  auto input_t2 = predictor->GetInputTensor(input_names[2]);
  input_t2->Reshape({batch_size, 2, 1, 1});
  input_t2->copy_from_cpu(first.data());

  ASSERT_TRUE(predictor->ZeroCopyRun());

  std::vector<float> out_data;
  auto output_names = predictor->GetOutputNames();
  auto output_t = predictor->GetOutputTensor(output_names[0]);
  std::vector<int> output_shape = output_t->shape();
  int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                std::multiplies<int>());
  out_data.resize(out_num);
  output_t->copy_to_cpu(out_data.data());
  std::vector<float> result = {0.617728, 1.63504, 2.15771, 0.535556};
  for (size_t i = 0; i < out_data.size(); i++) {
142
    EXPECT_NEAR(result[i], out_data[i], 1e-5);
143 144 145
  }
}

146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
void TestTunedDynamic() {
  std::string model_dir =
      FLAGS_infer_model + "/complex_model_dynamic/complex_model_dynamic2";
  AnalysisConfig config_tuned;
  const std::string shape_range = "shape_range.pbtxt";
  config_tuned.EnableUseGpu(100, 0);
  config_tuned.SetModel(model_dir + "/model", model_dir + "/params");
  config_tuned.SwitchUseFeedFetchOps(false);
  config_tuned.CollectShapeRangeInfo(shape_range);

  int batch_size = 1;
  auto predictor_tuned = CreatePaddlePredictor(config_tuned);

  auto check_func = [batch_size](PaddlePredictor *predictor) {
    int channels = 3;
    int height = 5;
    int width = 5;
    int input_num = channels * height * width * 1;

    float *input = new float[input_num];
    memset(input, 0, input_num * sizeof(float));
    auto input_names = predictor->GetInputNames();
    auto input_t = predictor->GetInputTensor(input_names[0]);
    input_t->Reshape({batch_size, channels, height, width});
    input_t->copy_from_cpu(input);

    auto input_t1 = predictor->GetInputTensor(input_names[1]);
    input_t1->Reshape({batch_size, 2, 1, 1});
    std::vector<float> first;
    for (int i = 0; i < batch_size * 2; i++) first.push_back(1.0);
    input_t1->copy_from_cpu(first.data());

    auto input_t2 = predictor->GetInputTensor(input_names[2]);
    input_t2->Reshape({batch_size, 2, 1, 1});
    input_t2->copy_from_cpu(first.data());

    ASSERT_TRUE(predictor->ZeroCopyRun());

    std::vector<float> out_data;
    auto output_names = predictor->GetOutputNames();
    auto output_t = predictor->GetOutputTensor(output_names[0]);
    std::vector<int> output_shape = output_t->shape();
    int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
                                  std::multiplies<int>());
    out_data.resize(out_num);
    output_t->copy_to_cpu(out_data.data());
  };
  check_func(predictor_tuned.get());

  // check tuned_dynamic_shape
  AnalysisConfig config;
  config.EnableUseGpu(100, 0);
  std::string cache_dir = "tuned_cache";
  config.SetOptimCacheDir(cache_dir);
  delete_cache_files(cache_dir);
  config.SetModel(model_dir + "/model", model_dir + "/params");
  config.SwitchUseFeedFetchOps(false);
  config.EnableTunedTensorRtDynamicShape(shape_range, true);
  config.EnableTensorRtEngine(1 << 30, batch_size, 0,
                              AnalysisConfig::Precision::kFloat32, true, false);
  auto test_predictor = CreatePaddlePredictor(config);
  check_func(test_predictor.get());
}

210 211
TEST(AnalysisPredictor, trt_dynamic) { TestDynamic(true); }
TEST(AnalysisPredictor, trt_static) { TestDynamic(false); }
212 213 214 215 216 217
TEST(AnalysisPredictor, trt_memory_serialize) {
  // serailize
  TestDynamic(false, true, true);
  // deserailize
  TestDynamic(false, false, true);
}
218
TEST(AnalysisPredictor, trt_dynamic2) { TestDynamic2(); }
219

220 221
TEST(AnalysisPredictor, trt_tuned_dynamic) { TestTunedDynamic(); }

222 223
}  // namespace inference
}  // namespace paddle