Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
1a6ce8b9
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
1a6ce8b9
编写于
4月 01, 2020
作者:
Z
Zhaolong Xing
提交者:
GitHub
4月 01, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add swish split gelu plugin dynamic support (#23305)
test=develop
上级
2bb1b0e8
变更
12
隐藏空白更改
内联
并排
Showing
12 changed file
with
691 addition
and
91 deletion
+691
-91
paddle/fluid/inference/tensorrt/convert/gelu_op.cc
paddle/fluid/inference/tensorrt/convert/gelu_op.cc
+17
-8
paddle/fluid/inference/tensorrt/convert/split_op.cc
paddle/fluid/inference/tensorrt/convert/split_op.cc
+40
-8
paddle/fluid/inference/tensorrt/convert/swish_op.cc
paddle/fluid/inference/tensorrt/convert/swish_op.cc
+14
-4
paddle/fluid/inference/tensorrt/engine.cc
paddle/fluid/inference/tensorrt/engine.cc
+1
-0
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.cu
+162
-17
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h
+65
-21
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
+138
-0
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
+64
-9
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu
+113
-4
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h
+58
-7
paddle/fluid/inference/tests/api/CMakeLists.txt
paddle/fluid/inference/tests/api/CMakeLists.txt
+2
-2
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
+17
-11
未找到文件。
paddle/fluid/inference/tensorrt/convert/gelu_op.cc
浏览文件 @
1a6ce8b9
...
...
@@ -19,6 +19,9 @@ namespace paddle {
namespace
inference
{
namespace
tensorrt
{
/*
* Gelu converter from fluid to tensorRT.
*/
/*
* Gelu converter from fluid to tensorRT.
*/
...
...
@@ -40,15 +43,21 @@ class GeluOpConverter : public OpConverter {
PADDLE_ENFORCE_EQ
(
output_num
,
1
,
platform
::
errors
::
InvalidArgument
(
"gelu op has only 1 output, but got %d"
,
output_num
));
// Get input shape and volume
nvinfer1
::
Dims
input_shape
=
input
->
getDimensions
();
size_t
input_volume
=
1
;
for
(
int
i
=
0
;
i
<
input_shape
.
nbDims
;
i
++
)
{
input_volume
*=
input_shape
.
d
[
i
];
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
GeluPluginDynamic
*
plugin
=
new
plugin
::
GeluPluginDynamic
();
layer
=
engine_
->
AddPluginV2
(
&
input
,
input_num
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
GeluPlugin
*
plugin
=
new
plugin
::
GeluPlugin
();
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
}
plugin
::
GeluPlugin
*
plugin
=
new
plugin
::
GeluPlugin
(
input_volume
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"gelu"
,
{
output_name
},
test_mode
);
}
...
...
paddle/fluid/inference/tensorrt/convert/split_op.cc
浏览文件 @
1a6ce8b9
...
...
@@ -37,25 +37,57 @@ class SplitOpConverter : public OpConverter {
int
axis
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"axis"
));
// split on batch is not supported in TensorRT
PADDLE_ENFORCE
(
axis
!=
0
);
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
std
::
vector
<
int
>
output_lengths
=
boost
::
get
<
std
::
vector
<
int
>>
(
op_desc
.
GetAttr
(
"sections"
));
output_lengths
.
reserve
(
output_num
);
int
num
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"num"
));
int
num
=
0
;
if
(
op_desc
.
HasAttr
(
"num"
))
{
num
=
boost
::
get
<
int
>
(
op_desc
.
GetAttr
(
"num"
));
}
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
0
;
#endif
}
else
{
axis
+=
(
axis
<
0
)
?
input_dims
.
nbDims
:
-
1
;
}
PADDLE_ENFORCE_NE
(
input_dims
.
d
[
axis
],
-
1
,
platform
::
errors
::
InvalidArgument
(
"The (%d) dim of input should not be -1"
,
axis
));
if
(
num
>
0
)
{
int64_t
in_axis_dim
=
input_dims
.
d
[
axis
];
PADDLE_ENFORCE_EQ
(
in_axis_dim
%
num
,
0
,
"Tensor split does not result"
" in an equal division"
);
size_t
out_axis_dim
=
in_axis_dim
/
num
;
for
(
size_t
i
=
0
;
i
<
output_
num
;
++
i
)
{
for
(
int
i
=
0
;
i
<
num
;
++
i
)
{
output_lengths
.
push_back
(
out_axis_dim
);
}
}
PADDLE_ENFORCE
(
output_lengths
.
size
()
==
output_num
);
plugin
::
SplitPlugin
*
plugin
=
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
PADDLE_ENFORCE_EQ
(
output_lengths
.
size
(),
output_num
,
platform
::
errors
::
InvalidArgument
(
"The output_length should be equal to the output size."
));
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
SplitPluginDynamic
*
plugin
=
new
plugin
::
SplitPluginDynamic
(
axis
,
output_lengths
);
layer
=
engine_
->
AddPluginV2
(
&
input
,
input_num
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
SplitPlugin
*
plugin
=
new
plugin
::
SplitPlugin
(
axis
,
output_lengths
);
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
}
std
::
string
layer_name
=
"split (Output: "
;
for
(
size_t
i
=
0
;
i
<
output_num
;
i
++
)
{
...
...
paddle/fluid/inference/tensorrt/convert/swish_op.cc
浏览文件 @
1a6ce8b9
...
...
@@ -36,10 +36,20 @@ class SwishOpConverter : public OpConverter {
// Get attrs
float
beta
=
boost
::
get
<
float
>
(
op_desc
.
GetAttr
(
"beta"
));
plugin
::
SwishPlugin
*
plugin
=
new
plugin
::
SwishPlugin
(
beta
);
nvinfer1
::
IPluginLayer
*
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
nvinfer1
::
ILayer
*
layer
=
nullptr
;
if
(
engine_
->
with_dynamic_shape
())
{
#if IS_TRT_VERSION_GE(6000)
plugin
::
SwishPluginDynamic
*
plugin
=
new
plugin
::
SwishPluginDynamic
(
beta
);
layer
=
engine_
->
AddPluginV2
(
&
input
,
input_num
,
plugin
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"You are running the TRT Dynamic Shape mode, need to confirm that "
"your TRT version is no less than 6.0"
));
#endif
}
else
{
plugin
::
SwishPlugin
*
plugin
=
new
plugin
::
SwishPlugin
(
beta
);
layer
=
engine_
->
AddPlugin
(
&
input
,
input_num
,
plugin
);
}
auto
output_name
=
op_desc
.
Output
(
"Out"
)[
0
];
RreplenishLayerAndOutput
(
layer
,
"swish"
,
{
output_name
},
test_mode
);
...
...
paddle/fluid/inference/tensorrt/engine.cc
浏览文件 @
1a6ce8b9
...
...
@@ -148,6 +148,7 @@ void TensorRTEngine::FreezeNetwork() {
if
(
with_dynamic_shape_
)
{
#if IS_TRT_VERSION_GE(6000)
LOG
(
INFO
)
<<
"Run Paddle-TRT Dynamic Shape mode."
;
for
(
auto
&
input
:
min_input_shape_
)
{
optim_profile_
->
setDimensions
(
input
.
first
.
c_str
(),
nvinfer1
::
OptProfileSelector
::
kMIN
,
...
...
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.cu
浏览文件 @
1a6ce8b9
...
...
@@ -24,12 +24,29 @@ namespace tensorrt {
namespace
plugin
{
// constants for approximating the normal cdf
constexpr
float
A
=
1.41421356237309504
;
// sqrt(2)
static
const
float
kA
=
1.41421356237309504
;
// sqrt(2)
static
const
float
kAT
=
0.5
;
static
const
float
kBT
=
0.7978845608028654
;
// sqrt(2.0/M_PI)
static
const
float
kCT
=
0.035677408136300125
;
// 0.044715 * sqrt(2.0/M_PI)
GeluPlugin
*
CreateGeluPluginDeserialize
(
const
void
*
buffer
,
size_t
length
)
{
return
new
GeluPlugin
(
buffer
,
length
);
}
REGISTER_TRT_PLUGIN
(
"gelu plugin"
,
CreateGeluPluginDeserialize
);
REGISTER_TRT_PLUGIN
(
"gelu_plugin"
,
CreateGeluPluginDeserialize
);
bool
GeluPlugin
::
supportsFormat
(
nvinfer1
::
DataType
type
,
nvinfer1
::
PluginFormat
format
)
const
{
#ifdef SUPPORTS_CUDA_FP16
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
||
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
format
==
nvinfer1
::
PluginFormat
::
kNCHW
));
#else
return
((
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
format
==
nvinfer1
::
PluginFormat
::
kNCHW
));
#endif
}
nvinfer1
::
Dims
GeluPlugin
::
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
in_dims
,
...
...
@@ -42,7 +59,7 @@ nvinfer1::Dims GeluPlugin::getOutputDimensions(int index,
}
template
<
typename
T
,
unsigned
TPB
>
__global__
void
gelu
K
ernel
(
const
T
a
,
int
n
,
const
T
*
input
,
T
*
output
)
{
__global__
void
gelu
_k
ernel
(
const
T
a
,
int
n
,
const
T
*
input
,
T
*
output
)
{
const
int
idx
=
blockIdx
.
x
*
TPB
+
threadIdx
.
x
;
if
(
idx
<
n
)
{
const
T
in
=
input
[
idx
];
...
...
@@ -51,24 +68,152 @@ __global__ void geluKernel(const T a, int n, const T* input, T* output) {
}
}
int
computeGelu
(
cudaStream_t
stream
,
int
n
,
const
float
*
input
,
float
*
output
)
{
constexpr
int
blockSize
=
256
;
const
int
gridSize
=
(
n
+
blockSize
-
1
)
/
blockSize
;
geluKernel
<
float
,
blockSize
><<<
gridSize
,
blockSize
,
0
,
stream
>>>
(
A
,
n
,
input
,
output
);
cudaError_t
error
=
cudaGetLastError
();
if
(
error
!=
cudaSuccess
)
LOG
(
ERROR
)
<<
cudaGetErrorString
(
error
);
return
0
;
template
<
typename
T
>
__device__
T
do_tanh
(
T
a
);
template
<
>
__device__
float
do_tanh
<
float
>
(
float
a
)
{
return
tanf
(
a
);
}
int
GeluPlugin
::
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
template
<
>
__device__
half
do_tanh
<
half
>
(
half
a
)
{
const
float
tmp
=
tanhf
(
__half2float
(
a
));
return
__float2half
(
tmp
);
}
// the kernel below is not aligned with fluid fp32 forwrad ones, use it for
// fp16.
template
<
typename
T
,
unsigned
TPB
>
__global__
void
no_exact_gelu_kernel
(
const
T
a
,
const
T
b
,
const
T
c
,
int
n
,
const
T
*
input
,
T
*
output
)
{
const
int
idx
=
blockIdx
.
x
*
TPB
+
threadIdx
.
x
;
if
(
idx
<
n
)
{
const
T
in
=
input
[
idx
];
const
T
tmp
=
in
*
(
c
*
in
*
in
+
b
);
const
T
cdf
=
a
+
a
*
do_tanh
<
T
>
(
tmp
);
output
[
idx
]
=
in
*
cdf
;
}
}
int
GeluPlugin
::
enqueue
(
int
batch_size
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
,
cudaStream_t
stream
)
{
int
status
=
-
1
;
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
status
=
computeGelu
(
stream
,
input_volume_
*
batchSize
,
input
,
output
);
return
status
;
const
auto
&
input_dims
=
this
->
getInputDims
(
0
);
int
num
=
batch_size
;
for
(
int
i
=
0
;
i
<
input_dims
.
nbDims
;
i
++
)
{
num
*=
input_dims
.
d
[
i
];
}
const
int
block_size
=
256
;
const
int
grid_size
=
(
num
+
block_size
-
1
)
/
block_size
;
auto
type
=
getDataType
();
if
(
type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
gelu_kernel
<
float
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kA
,
num
,
input
,
output
);
}
else
if
(
type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
const
half
*
input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
no_exact_gelu_kernel
<
half
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kAT
,
kBT
,
kCT
,
num
,
input
,
output
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The Gelu TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
size_t
GeluPluginDynamic
::
getSerializationSize
()
const
{
return
0
;
}
void
GeluPluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
GeluPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
return
inputs
[
0
];
}
bool
GeluPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
#ifdef SUPPORTS_CUDA_FP16
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
GeluPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The Gelu Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
int
GeluPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
size_t
num
=
ProductDim
(
input_dims
);
const
int
block_size
=
256
;
const
int
grid_size
=
(
num
+
block_size
-
1
)
/
block_size
;
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
gelu_kernel
<
float
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kA
,
num
,
input
,
output
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
const
half
*
input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
no_exact_gelu_kernel
<
half
,
block_size
><<<
grid_size
,
block_size
,
0
,
stream
>>>
(
kAT
,
kBT
,
kCT
,
num
,
input
,
output
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The Gelu TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/plugin/gelu_op_plugin.h
浏览文件 @
1a6ce8b9
...
...
@@ -25,46 +25,90 @@ namespace tensorrt {
namespace
plugin
{
class
GeluPlugin
:
public
PluginTensorRT
{
public:
GeluPlugin
()
{}
// It was used for tensorrt deserialization.
// It should not be called by users.
GeluPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
}
~
GeluPlugin
()
{}
GeluPlugin
*
clone
()
const
override
{
return
new
GeluPlugin
();
}
const
char
*
getPluginType
()
const
override
{
return
"gelu_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
{
return
0
;
}
bool
supportsFormat
(
nvinfer1
::
DataType
type
,
nvinfer1
::
PluginFormat
format
)
const
override
;
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
protected:
size_t
getSerializationSize
()
override
{
return
getBaseSerializationSize
()
+
SerializedSize
(
getPluginType
())
+
SerializedSize
(
input_volume_
);
return
getBaseSerializationSize
()
+
SerializedSize
(
getPluginType
());
}
// TRT will call this func to serialize the configuration of TRT
// It should not be called by users.
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
input_volume_
);
}
};
#if IS_TRT_VERSION_GE(6000)
class
GeluPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
explicit
GeluPlugin
(
size_t
input_volume
)
:
input_volume_
(
input_volume
)
{}
GeluPluginDynamic
()
{}
GeluPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{}
// It was used for tensorrt deserialization.
// It should not be called by users.
GeluPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
input_volume_
);
~
GeluPluginDynamic
()
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
GeluPluginDynamic
();
}
~
GeluPlugin
()
{
}
const
char
*
getPluginType
()
const
override
{
return
"gelu_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
{
return
0
;
}
GeluPlugin
*
clone
()
const
override
{
return
new
GeluPlugin
(
input_volume_
);
}
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
const
char
*
getPluginType
()
const
override
{
return
"gelu_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
outputIndex
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nbInputs
,
nvinfer1
::
IExprBuilder
&
exprBuilder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
private:
size_t
input_volume_
;
void
destroy
()
override
{
delete
this
;
}
};
#endif
}
// namespace plugin
}
// namespace tensorrt
...
...
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.cu
浏览文件 @
1a6ce8b9
...
...
@@ -128,6 +128,144 @@ int SplitPlugin::enqueue(int batchSize, const void* const* inputs,
return
cudaGetLastError
()
!=
cudaSuccess
;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int
SplitPluginDynamic
::
initialize
()
{
return
0
;
}
size_t
SplitPluginDynamic
::
getSerializationSize
()
const
{
return
0
;
}
void
SplitPluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
SplitPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
PADDLE_ENFORCE_EQ
(
nb_inputs
,
1
,
platform
::
errors
::
InvalidArgument
(
"The Split plugin should be only one input."
));
PADDLE_ENFORCE_LT
(
output_index
,
output_length_
.
size
(),
platform
::
errors
::
InvalidArgument
(
"When GetOutputDimensions, the index(%d) should not "
"greater the num(%d) of the outpus."
,
output_index
,
output_length_
.
size
()));
nvinfer1
::
DimsExprs
output_dims
=
inputs
[
0
];
output_dims
.
d
[
axis_
]
=
expr_builder
.
constant
(
output_length_
.
at
(
output_index
));
return
output_dims
;
}
bool
SplitPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
#ifdef SUPPORTS_CUDA_FP16
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
SplitPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
return
input_types
[
0
];
}
int
SplitPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
int
outer_rows
=
1
;
int
inner_cols
=
1
;
// with batch
for
(
int
i
=
0
;
i
<
axis_
;
i
++
)
{
outer_rows
*=
input_dims
.
d
[
i
];
}
for
(
int
i
=
axis_
+
1
;
i
<
input_dims
.
nbDims
;
i
++
)
{
inner_cols
*=
input_dims
.
d
[
i
];
}
std
::
vector
<
int
>
segment_offsets
(
1
,
0
);
for
(
int
i
=
0
;
i
<
this
->
getNbOutputs
();
i
++
)
{
segment_offsets
.
push_back
(
segment_offsets
.
back
()
+
output_length_
[
i
]);
}
int
axis_shape
=
input_dims
.
d
[
axis_
];
thrust
::
device_vector
<
int
>
d_segment_offsets
=
segment_offsets
;
const
int
*
d_segment_offsets_ptr
=
thrust
::
raw_pointer_cast
(
&
d_segment_offsets
[
0
]);
dim3
block
(
32
,
16
);
dim3
grid
(
std
::
min
((
inner_cols
-
1
)
/
block
.
x
+
1
,
65535u
),
std
::
min
((
axis_shape
-
1
)
/
block
.
y
+
1
,
65535u
),
std
::
min
((
outer_rows
-
1
)
/
block
.
z
+
1
,
65535u
));
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
thrust
::
device_vector
<
float
*>
d_output_ptrs
;
d_output_ptrs
.
resize
(
this
->
getNbOutputs
(),
nullptr
);
const
float
*
input_ptr
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
const
*
h_odatas
=
reinterpret_cast
<
float
*
const
*>
(
outputs
);
float
**
output_ptrs
=
thrust
::
raw_pointer_cast
(
&
d_output_ptrs
[
0
]);
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpyAsync
(
output_ptrs
,
h_odatas
,
d_output_ptrs
.
size
()
*
sizeof
(
float
*
),
cudaMemcpyHostToDevice
,
stream
),
platform
::
errors
::
External
(
"CUDA Memcpy failed during split plugin run."
));
split_kernel
<<<
grid
,
block
,
0
,
stream
>>>
(
d_segment_offsets
.
size
(),
d_segment_offsets_ptr
,
input_ptr
,
output_ptrs
,
inner_cols
,
axis_shape
,
outer_rows
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
thrust
::
device_vector
<
half
*>
d_output_ptrs
;
d_output_ptrs
.
resize
(
this
->
getNbOutputs
(),
nullptr
);
const
half
*
input_ptr
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
const
*
h_odatas
=
reinterpret_cast
<
half
*
const
*>
(
outputs
);
half
**
output_ptrs
=
thrust
::
raw_pointer_cast
(
&
d_output_ptrs
[
0
]);
PADDLE_ENFORCE_CUDA_SUCCESS
(
cudaMemcpyAsync
(
output_ptrs
,
h_odatas
,
d_output_ptrs
.
size
()
*
sizeof
(
half
*
),
cudaMemcpyHostToDevice
,
stream
),
platform
::
errors
::
External
(
"CUDA Memcpy failed during split plugin run."
));
split_kernel
<<<
grid
,
block
,
0
,
stream
>>>
(
d_segment_offsets
.
size
(),
d_segment_offsets_ptr
,
input_ptr
,
output_ptrs
,
inner_cols
,
axis_shape
,
outer_rows
);
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/split_op_plugin.h
浏览文件 @
1a6ce8b9
...
...
@@ -27,28 +27,28 @@ namespace plugin {
class
SplitPlugin
:
public
PluginTensorRT
{
public:
SplitPlugin
()
{}
SplitPlugin
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
SplitPlugin
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
:
axis_
(
axis
),
same_shape_
(
true
),
output_length_
(
output_lengths
)
{}
SplitPlugin
(
void
const
*
serial_data
,
size_t
serial_length
)
{
SplitPlugin
(
void
const
*
serial_data
,
size_t
serial_length
)
{
deserializeBase
(
serial_data
,
serial_length
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
axis_
);
DeserializeValue
(
&
serial_data
,
&
serial_length
,
&
output_length_
);
}
SplitPlugin
*
clone
()
const
override
{
SplitPlugin
*
clone
()
const
override
{
return
new
SplitPlugin
(
axis_
,
output_length_
);
}
const
char
*
getPluginType
()
const
override
{
return
"split_plugin"
;
}
const
char
*
getPluginType
()
const
override
{
return
"split_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
output_length_
.
size
();
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
input_dims
,
const
nvinfer1
::
Dims
*
input_dims
,
int
num_inputs
)
override
;
int
initialize
()
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
protected:
size_t
getSerializationSize
()
override
{
...
...
@@ -56,7 +56,7 @@ class SplitPlugin : public PluginTensorRT {
SerializedSize
(
output_length_
)
+
getBaseSerializationSize
();
}
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
axis_
);
...
...
@@ -71,9 +71,64 @@ class SplitPlugin : public PluginTensorRT {
std
::
vector
<
int
>
output_length_
;
std
::
vector
<
int
>
segment_offsets_
;
thrust
::
device_vector
<
int
>
d_segment_offsets_
;
thrust
::
device_vector
<
float
*>
d_output_ptrs_
;
thrust
::
device_vector
<
float
*>
d_output_ptrs_
;
};
#if IS_TRT_VERSION_GE(6000)
class
SplitPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
SplitPluginDynamic
(
int
axis
,
std
::
vector
<
int
>
const
&
output_lengths
)
:
axis_
(
axis
),
output_length_
(
output_lengths
)
{}
SplitPluginDynamic
(
void
const
*
serial_data
,
size_t
serial_length
)
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
SplitPluginDynamic
(
axis_
,
output_length_
);
}
const
char
*
getPluginType
()
const
override
{
return
"split_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
output_length_
.
size
();
}
int
initialize
()
override
;
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
outputIndex
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nbInputs
,
nvinfer1
::
IExprBuilder
&
exprBuilder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
private:
int
axis_
;
std
::
vector
<
int
>
output_length_
;
};
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.cu
浏览文件 @
1a6ce8b9
...
...
@@ -40,15 +40,33 @@ nvinfer1::Dims SwishPlugin::getOutputDimensions(int index,
nvinfer1
::
Dims
output_dims
=
input_dims
;
return
output_dims
;
}
__global__
void
swish_kernel
(
int
num
,
const
float
*
input
,
float
*
output
,
float
beta
)
{
template
<
typename
T
>
__device__
T
math_exp
(
T
a
);
#ifdef SUPPORTS_CUDA_FP16
template
<
>
__device__
half
math_exp
<
half
>
(
half
a
)
{
return
hexp
(
a
);
}
#endif
template
<
>
__device__
float
math_exp
<
float
>
(
float
a
)
{
return
expf
(
a
);
}
template
<
typename
T
>
__global__
void
swish_kernel
(
int
num
,
const
T
*
input
,
T
*
output
,
T
beta
)
{
int
index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
if
(
index
<
num
)
{
#if __CUDA_ARCH__ >= 350
output
[
index
]
=
__ldg
(
input
+
index
)
/
(
1.0
f
+
expf
(
-
beta
*
__ldg
(
input
+
index
)));
__ldg
(
input
+
index
)
/
(
static_cast
<
T
>
(
1.0
)
+
math_exp
<
T
>
(
-
beta
*
__ldg
(
input
+
index
)));
#else
output
[
index
]
=
input
[
index
]
/
(
1.0
f
+
expf
(
-
beta
*
input
[
index
]));
output
[
index
]
=
input
[
index
]
/
(
static_cast
<
T
>
(
1.0
)
+
math_exp
<
T
>
(
-
beta
*
input
[
index
]));
#endif
}
}
...
...
@@ -70,6 +88,97 @@ int SwishPlugin::enqueue(int batch_size, const void *const *inputs,
return
cudaGetLastError
()
!=
cudaSuccess
;
}
// Dynamic Plugin below.
#if IS_TRT_VERSION_GE(6000)
int
SwishPluginDynamic
::
initialize
()
{
setPluginNamespace
(
"swish"
);
getPluginNamespace
();
return
0
;
}
size_t
SwishPluginDynamic
::
getSerializationSize
()
const
{
return
0
;
}
void
SwishPluginDynamic
::
serialize
(
void
*
buffer
)
const
{}
nvinfer1
::
DimsExprs
SwishPluginDynamic
::
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
{
return
inputs
[
0
];
}
bool
SwishPluginDynamic
::
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
in_out
,
int
nb_inputs
,
int
nb_outputs
)
{
PADDLE_ENFORCE_NOT_NULL
(
in_out
,
platform
::
errors
::
InvalidArgument
(
"The input of swish plugin shoule not be nullptr."
));
PADDLE_ENFORCE_LT
(
pos
,
nb_inputs
+
nb_outputs
,
platform
::
errors
::
InvalidArgument
(
"The pos(%d) should be less than the "
"num(%d) of the input and the output."
,
pos
,
nb_inputs
+
nb_outputs
));
(
in_out
&&
pos
<
(
nb_inputs
+
nb_outputs
));
const
nvinfer1
::
PluginTensorDesc
&
in
=
in_out
[
pos
];
if
(
pos
==
0
)
{
#ifdef SUPPORTS_CUDA_FP16
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
||
in
.
type
==
nvinfer1
::
DataType
::
kHALF
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#else
return
(
in
.
type
==
nvinfer1
::
DataType
::
kFLOAT
)
&&
(
in
.
format
==
nvinfer1
::
TensorFormat
::
kLINEAR
);
#endif
}
const
nvinfer1
::
PluginTensorDesc
&
prev
=
in_out
[
pos
-
1
];
// output
return
in
.
type
==
prev
.
type
&&
in
.
format
==
prev
.
format
;
}
nvinfer1
::
DataType
SwishPluginDynamic
::
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
input_types
,
int
nb_inputs
)
const
{
PADDLE_ENFORCE_EQ
(
index
,
0
,
platform
::
errors
::
InvalidArgument
(
"The Swish Plugin only has one input, so the "
"index value should be 0, but get %d."
,
index
));
return
input_types
[
0
];
}
int
SwishPluginDynamic
::
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
input_desc
,
const
nvinfer1
::
PluginTensorDesc
*
output_desc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
{
auto
input_dims
=
input_desc
[
0
].
dims
;
size_t
num
=
ProductDim
(
input_dims
);
int
threads
=
1024
;
int
blocks
=
(
num
+
threads
-
1
)
/
threads
;
auto
input_type
=
input_desc
[
0
].
type
;
if
(
input_type
==
nvinfer1
::
DataType
::
kFLOAT
)
{
const
float
*
input
=
static_cast
<
const
float
*>
(
inputs
[
0
]);
float
*
output
=
static_cast
<
float
*>
(
outputs
[
0
]);
swish_kernel
<
float
><<<
blocks
,
threads
,
0
,
stream
>>>
(
num
,
input
,
output
,
beta_
);
}
else
if
(
input_type
==
nvinfer1
::
DataType
::
kHALF
)
{
#ifdef SUPPORTS_CUDA_FP16
const
half
*
input
=
static_cast
<
const
half
*>
(
inputs
[
0
]);
half
*
output
=
static_cast
<
half
*>
(
outputs
[
0
]);
swish_kernel
<
half
><<<
blocks
,
threads
,
0
,
stream
>>>
(
num
,
input
,
output
,
static_cast
<
half
>
(
beta_
));
#else
PADDLE_THROW
(
platform
::
errors
::
Fatal
(
"The cuda archs you specific should greater than 600."
));
#endif
}
else
{
PADDLE_THROW
(
platform
::
errors
::
InvalidArgument
(
"The Swish TRT Plugin's input type should be float or half."
));
}
return
cudaGetLastError
()
!=
cudaSuccess
;
}
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tensorrt/plugin/swish_op_plugin.h
浏览文件 @
1a6ce8b9
...
...
@@ -38,7 +38,7 @@ class SwishPlugin : public PluginTensorRT {
// TRT will call this func when we need to serialize the configuration of
// tensorrt.
// It should not be called by users.
void
serialize
(
void
*
buffer
)
override
{
void
serialize
(
void
*
buffer
)
override
{
SerializeValue
(
&
buffer
,
getPluginType
());
serializeBase
(
buffer
);
SerializeValue
(
&
buffer
,
beta_
);
...
...
@@ -49,23 +49,74 @@ class SwishPlugin : public PluginTensorRT {
// It was used for tensorrt deserialization.
// It should not be called by users.
SwishPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
SwishPlugin
(
void
const
*
serialData
,
size_t
serialLength
)
{
deserializeBase
(
serialData
,
serialLength
);
DeserializeValue
(
&
serialData
,
&
serialLength
,
&
beta_
);
}
~
SwishPlugin
()
{}
int
initialize
()
override
;
SwishPlugin
*
clone
()
const
override
{
return
new
SwishPlugin
(
beta_
);
}
SwishPlugin
*
clone
()
const
override
{
return
new
SwishPlugin
(
beta_
);
}
const
char
*
getPluginType
()
const
override
{
return
"swish_plugin"
;
}
const
char
*
getPluginType
()
const
override
{
return
"swish_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
nvinfer1
::
Dims
getOutputDimensions
(
int
index
,
const
nvinfer1
::
Dims
*
inputs
,
int
nbInputDims
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
int
enqueue
(
int
batchSize
,
const
void
*
const
*
inputs
,
void
**
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
};
#if IS_TRT_VERSION_GE(6000)
class
SwishPluginDynamic
:
public
DynamicPluginTensorRT
{
public:
explicit
SwishPluginDynamic
(
const
float
beta
)
:
beta_
(
beta
)
{}
SwishPluginDynamic
(
void
const
*
serialData
,
size_t
serialLength
)
{}
nvinfer1
::
IPluginV2DynamicExt
*
clone
()
const
override
{
return
new
SwishPluginDynamic
(
beta_
);
}
const
char
*
getPluginType
()
const
override
{
return
"swish_plugin"
;
}
int
getNbOutputs
()
const
override
{
return
1
;
}
int
initialize
()
override
;
size_t
getSerializationSize
()
const
override
;
void
serialize
(
void
*
buffer
)
const
override
;
nvinfer1
::
DimsExprs
getOutputDimensions
(
int
output_index
,
const
nvinfer1
::
DimsExprs
*
inputs
,
int
nb_inputs
,
nvinfer1
::
IExprBuilder
&
expr_builder
)
override
;
bool
supportsFormatCombination
(
int
pos
,
const
nvinfer1
::
PluginTensorDesc
*
inOut
,
int
nbInputs
,
int
nbOutputs
)
override
;
void
configurePlugin
(
const
nvinfer1
::
DynamicPluginTensorDesc
*
in
,
int
nbInputs
,
const
nvinfer1
::
DynamicPluginTensorDesc
*
out
,
int
nbOutputs
)
override
{}
size_t
getWorkspaceSize
(
const
nvinfer1
::
PluginTensorDesc
*
inputs
,
int
nbInputs
,
const
nvinfer1
::
PluginTensorDesc
*
outputs
,
int
nbOutputs
)
const
override
{
return
0
;
}
int
enqueue
(
const
nvinfer1
::
PluginTensorDesc
*
inputDesc
,
const
nvinfer1
::
PluginTensorDesc
*
outputDesc
,
const
void
*
const
*
inputs
,
void
*
const
*
outputs
,
void
*
workspace
,
cudaStream_t
stream
)
override
;
nvinfer1
::
DataType
getOutputDataType
(
int
index
,
const
nvinfer1
::
DataType
*
inputTypes
,
int
nbInputs
)
const
override
;
void
destroy
()
override
{
delete
this
;
}
private:
float
beta_
;
};
#endif
}
// namespace plugin
}
// namespace tensorrt
}
// namespace inference
...
...
paddle/fluid/inference/tests/api/CMakeLists.txt
浏览文件 @
1a6ce8b9
...
...
@@ -373,9 +373,9 @@ if(WITH_GPU AND TENSORRT_FOUND)
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
ARGS --infer_model=
${
TRT_MODEL_QUANT_RESNET_DIR
}
)
set
(
TEST_TRT_DYNAMIC_MODEL
"
${
TRT_MODEL_INSTALL_DIR
}
/
test_trt_dy_conv
"
)
set
(
TEST_TRT_DYNAMIC_MODEL
"
${
TRT_MODEL_INSTALL_DIR
}
/
conv_bn_swish_split_gelu
"
)
if
(
NOT EXISTS
${
TEST_TRT_DYNAMIC_MODEL
}
)
inference_download_and_uncompress
(
${
TEST_TRT_DYNAMIC_MODEL
}
${
INFERENCE_URL
}
/tensorrt_test
"
test_trt_dy_conv
.tar.gz"
)
inference_download_and_uncompress
(
${
TEST_TRT_DYNAMIC_MODEL
}
${
INFERENCE_URL
}
/tensorrt_test
"
conv_bn_swish_split_gelu
.tar.gz"
)
endif
()
inference_analysis_test
(
trt_dynamic_shape_test SRCS trt_dynamic_shape_test.cc
EXTRA_DEPS
${
INFERENCE_EXTRA_DEPS
}
...
...
paddle/fluid/inference/tests/api/trt_dynamic_shape_test.cc
浏览文件 @
1a6ce8b9
...
...
@@ -21,24 +21,27 @@ limitations under the License. */
namespace
paddle
{
namespace
inference
{
TEST
(
AnalysisPredictor
,
use_gpu
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/
test_trt_dy_conv
"
;
void
TestDynamic
(
bool
with_dynamic
=
true
)
{
std
::
string
model_dir
=
FLAGS_infer_model
+
"/
conv_bn_swish_split_gelu
"
;
AnalysisConfig
config
;
config
.
EnableUseGpu
(
100
,
0
);
config
.
SetModel
(
model_dir
);
config
.
SetModel
(
model_dir
+
"/model"
,
model_dir
+
"/params"
);
config
.
SwitchUseFeedFetchOps
(
false
);
// Set the input's min, max, opt shape
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"image"
,
{
1
,
1
,
10
,
10
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
config
.
EnableTensorRtEngine
(
1
<<
30
,
1
,
1
,
AnalysisConfig
::
Precision
::
kFloat32
,
false
,
true
);
if
(
with_dynamic
)
{
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
min_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
max_input_shape
=
{
{
"image"
,
{
1
,
1
,
10
,
10
}}};
std
::
map
<
std
::
string
,
std
::
vector
<
int
>>
opt_input_shape
=
{
{
"image"
,
{
1
,
1
,
3
,
3
}}};
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
config
.
SetTRTDynamicShapeInfo
(
min_input_shape
,
max_input_shape
,
opt_input_shape
);
}
auto
predictor
=
CreatePaddlePredictor
(
config
);
auto
input_names
=
predictor
->
GetInputNames
();
int
channels
=
1
;
...
...
@@ -64,5 +67,8 @@ TEST(AnalysisPredictor, use_gpu) {
output_t
->
copy_to_cpu
(
out_data
.
data
());
}
TEST
(
AnalysisPredictor
,
trt_dynamic
)
{
TestDynamic
(
true
);
}
TEST
(
AnalysisPredictor
,
trt_static
)
{
TestDynamic
(
false
);
}
}
// namespace inference
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录