pybind.cc 6.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <fstream>
Y
Yu Yang 已提交
17
#include <vector>
18

Y
Yu Yang 已提交
19 20 21 22 23 24 25 26 27
#include "paddle/framework/net.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/scope.h"
#include "paddle/pybind/tensor_bind.h"
#include "pybind11/numpy.h"
#include "pybind11/pybind11.h"
#include "pybind11/stl.h"

28 29 30
namespace py = pybind11;
namespace pd = paddle::framework;

Y
Yu Yang 已提交
31
USE_OP(add_two);
Q
Qiao Longfei 已提交
32
USE_OP(onehot_cross_entropy);
Y
Yu Yang 已提交
33
USE_OP_WITHOUT_KERNEL(fc);
Q
Qiao Longfei 已提交
34
USE_OP(sgd);
Q
qijun 已提交
35 36 37 38
USE_OP(mul);
USE_OP(sigmoid);
USE_OP(softmax);
USE_OP(rowwise_add);
Y
Yan Chunwei 已提交
39
USE_OP_WITHOUT_KERNEL(recurrent_op);
Y
Yu Yang 已提交
40

Y
Yu Yang 已提交
41 42 43 44 45 46 47 48 49 50
template <typename ClassType>
void ExposeOperator(ClassType& m) {
  m.def("infer_shape", &ClassType::type::InferShape)
      .def("run", &ClassType::type::Run)
      .def("outputs",
           [](const typename ClassType::type& op) -> std::vector<std::string> {
             return op.outputs_;
           })
      .def("__str__", &ClassType::type::DebugString);
}
Y
Yu Yang 已提交
51

52 53 54 55 56
static size_t UniqueIntegerGenerator() {
  static std::atomic<size_t> generator;
  return generator.fetch_add(1);
}

57
PYBIND11_PLUGIN(core) {
Y
Yu Yang 已提交
58
  py::module m("core", "C++ core of PaddlePaddle");
59

Y
Yu Yang 已提交
60 61
  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
62
        return paddle::pybind::CastToPyBuffer(self);
Y
Yu Yang 已提交
63 64 65 66 67
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
F
fengjiayi 已提交
68
             self.Resize(pd::make_ddim(dim));
Y
Yu Yang 已提交
69 70 71 72 73 74 75 76 77
           })
      .def("alloc_float",
           [](pd::Tensor& self) {
             self.mutable_data<float>(paddle::platform::CPUPlace());
           })
      .def("alloc_int",
           [](pd::Tensor& self) {
             self.mutable_data<int>(paddle::platform::CPUPlace());
           })
78
      .def("set", paddle::pybind::PyTensorSetFromArray<float>)
Y
Yu Yang 已提交
79
      .def("set", paddle::pybind::PyTensorSetFromArray<int>)
Y
Yu Yang 已提交
80 81 82 83 84 85 86 87
      .def("shape", [](pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_float_element",
           [](pd::Tensor& self, size_t offset, float f) {
             self.data<float>()[offset] = f;
           })
      .def("get_float_element", [](pd::Tensor& self, size_t offset) -> float {
        return self.data<float>()[offset];
      });
Y
Yu Yang 已提交
88

89 90 91 92 93 94 95 96 97 98
  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
Y
Yu Yang 已提交
99 100 101 102 103
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
Y
Yan Chunwei 已提交
104 105 106 107 108
           py::return_value_policy::reference)
      .def("get_net",
           [](pd::Variable& self) -> pd::NetOp* {
             return self.GetMutable<pd::NetOp>();
           },
Y
Yu Yang 已提交
109
           py::return_value_policy::reference);
110

Y
Yu Yang 已提交
111 112 113 114 115 116 117 118 119 120 121 122
  py::class_<pd::Scope>(m, "Scope", "")
      .def("new_var",
           [](pd::Scope& self, const std::string& name) -> pd::Variable* {
             return self.NewVar(name);
           },
           py::return_value_policy::reference)
      .def("find_var", &pd::Scope::FindVar, py::return_value_policy::reference)
      .def(py::init<>())
      .def("new_scope",
           [](pd::Scope& self) -> pd::Scope* { return &self.NewScope(); },
           py::return_value_policy::reference)
      .def("drop_kids", &pd::Scope::DropKids);
123

Y
Yu Yang 已提交
124 125
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
126
  m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
Y
Yu Yang 已提交
127
    auto& protos = pd::OpRegistry::protos();
Y
Yu Yang 已提交
128
    std::vector<py::bytes> ret_values;
Y
Yu Yang 已提交
129
    for (auto it = protos.begin(); it != protos.end(); ++it) {
Y
Yu Yang 已提交
130 131
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
Y
Yu Yang 已提交
132 133
      std::string str;
      PADDLE_ENFORCE(it->second.SerializeToString(&str),
Y
Yu Yang 已提交
134
                     "Serialize OpProto Error. This could be a bug of Paddle.");
Y
Yu Yang 已提交
135
      ret_values.push_back(py::bytes(str));
Y
Yu Yang 已提交
136 137 138
    }
    return ret_values;
  });
139 140 141 142 143 144
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);

Y
Yu Yang 已提交
145 146 147 148 149
  py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
      .def_static("cpu_context", []() -> paddle::platform::DeviceContext* {
        return new paddle::platform::CPUDeviceContext();
      });

Y
Yu Yang 已提交
150 151
  py::class_<pd::OperatorBase, std::shared_ptr<pd::OperatorBase>> operator_base(
      m, "Operator");
Y
Yu Yang 已提交
152

Y
Yu Yang 已提交
153
  operator_base.def_static("create", [](py::bytes protobin) {
Y
Yu Yang 已提交
154 155 156 157 158 159 160 161 162 163
    pd::OpDesc desc;
    PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                   "Cannot parse user input to OpDesc");
    PADDLE_ENFORCE(desc.IsInitialized(),
                   "User OpDesc is not initialized, reason %s",
                   desc.InitializationErrorString());
    return pd::OpRegistry::CreateOp(desc);
  });
  ExposeOperator(operator_base);

Y
Yu Yang 已提交
164
  py::class_<pd::NetOp, std::shared_ptr<pd::NetOp>> net(m, "Net");
Y
Yu Yang 已提交
165 166

  net.def_static("create",
Y
Yu Yang 已提交
167 168
                 []() -> std::shared_ptr<pd::NetOp> {
                   auto retv = std::make_shared<pd::NetOp>();
Y
Yu Yang 已提交
169
                   retv->type_ = "plain_net";
Y
Yu Yang 已提交
170 171
                   return retv;
                 })
Y
Yu Yang 已提交
172
      .def("add_op", &pd::NetOp::AddOp)
Y
Yu Yang 已提交
173
      .def("add_op",
Y
Yu Yang 已提交
174 175
           [](pd::NetOp& self, const std::shared_ptr<pd::NetOp>& net) -> void {
             self.AddOp(std::static_pointer_cast<pd::OperatorBase>(net));
Y
Yu Yang 已提交
176
           })
Y
Yu Yang 已提交
177 178 179
      .def("complete_add_op", &pd::NetOp::CompleteAddOp)
      .def("complete_add_op",
           [](std::shared_ptr<pd::NetOp>& self) { self->CompleteAddOp(); });
Y
Yu Yang 已提交
180
  ExposeOperator(net);
Y
Yu Yang 已提交
181

182 183
  m.def("unique_integer", UniqueIntegerGenerator);

184
  return m.ptr();
L
Luo Tao 已提交
185
}