pybind.cc 7.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

L
Luo Tao 已提交
15
#include <Python.h>
Y
Yu Yang 已提交
16
#include <paddle/framework/op_registry.h>
17
#include <paddle/framework/scope.h>
Y
Yu Yang 已提交
18
#include <pybind11/numpy.h>
19
#include <pybind11/pybind11.h>
Y
Yu Yang 已提交
20 21
#include <pybind11/stl.h>
#include <fstream>
Y
Yu Yang 已提交
22
#include <vector>
23 24 25 26

namespace py = pybind11;
namespace pd = paddle::framework;

Y
Yu Yang 已提交
27 28
USE_OP(add_two);

Y
Yu Yang 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
struct PlaceDebugString : public boost::static_visitor<std::string> {
  std::string operator()(const paddle::platform::GPUPlace& place) const {
    return "GPU(" + std::to_string(place.device) + ")";
  }

  std::string operator()(const paddle::platform::CPUPlace& place) const {
    return "CPU";
  }
};

template <typename T>
struct TensorToPyBuffer {
  pd::Tensor& self_;
  explicit TensorToPyBuffer(pd::Tensor& self) : self_(self) {}

  bool CanCast() const { return std::type_index(typeid(T)) == self_.type(); }

  py::buffer_info Cast() const {
    auto dim_vec = pd::vectorize(self_.dims());
    std::vector<size_t> dims_outside;
    std::vector<size_t> strides;
    dims_outside.resize(dim_vec.size());
    strides.resize(dim_vec.size());

    size_t prod = 1;
    for (size_t i = dim_vec.size(); i != 0; --i) {
      dims_outside[i - 1] = (size_t)dim_vec[i - 1];
      strides[i - 1] = sizeof(float) * prod;
      prod *= dims_outside[i - 1];
    }

    return py::buffer_info(self_.mutable_data<T>(self_.place()),
                           sizeof(T),
                           py::format_descriptor<T>::format(),
                           (size_t)pd::arity(self_.dims()),
                           dims_outside,
                           strides);
  }
};

template <bool less, size_t I, typename... ARGS>
struct CastToPyBufferImpl;

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<false, I, ARGS...> {
  py::buffer_info operator()(pd::Tensor& tensor) {
    PADDLE_THROW("This type of tensor cannot be expose to Python");
    return py::buffer_info();
  }
};

template <size_t I, typename... ARGS>
struct CastToPyBufferImpl<true, I, ARGS...> {
  using CUR_TYPE = typename std::tuple_element<I, std::tuple<ARGS...>>::type;
  py::buffer_info operator()(pd::Tensor& tensor) {
    TensorToPyBuffer<CUR_TYPE> cast_object(tensor);
    if (cast_object.CanCast()) {
      return cast_object.Cast();
    } else {
      constexpr bool less = I + 1 < std::tuple_size<std::tuple<ARGS...>>::value;
      return CastToPyBufferImpl<less, I + 1, ARGS...>()(tensor);
    }
  }
};

template <typename T>
std::ostream& operator<<(std::ostream& os, const std::vector<T>& vec) {
  for (size_t i = 0; i < vec.size(); ++i) {
    os << vec[i];
    if (i + 1 != vec.size()) {
      os << ", ";
    }
  }
  return os;
}

py::buffer_info CastToPyBuffer(pd::Tensor& tensor) {
  auto buffer_info = CastToPyBufferImpl<true, 0, float, int>()(tensor);
  return buffer_info;
}

template <typename T>
void PyTensorSet(
    pd::Tensor& self,
    py::array_t<T, py::array::c_style | py::array::forcecast> array) {
  std::vector<int> dims;
  dims.reserve(array.ndim());
  for (size_t i = 0; i < array.ndim(); ++i) {
    dims.push_back((int)array.shape()[i]);
  }

  self.set_dims(pd::make_ddim(dims));
  auto* dst = self.mutable_data<T>(paddle::platform::CPUPlace());
  std::memcpy(dst, array.data(), sizeof(T) * array.size());
}

125 126 127
PYBIND11_PLUGIN(core) {
  py::module m("core", "C++ core of Paddle Paddle");

Y
Yu Yang 已提交
128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
  py::class_<paddle::platform::Place>(
      m, "Place", R"DOC(Device Place Class.)DOC")
      .def("__str__",
           [](const paddle::platform::Place& self) {
             return boost::apply_visitor(PlaceDebugString(), self);
           })
      .def("is_gpu",
           [](const paddle::platform::Place& self) {
             return paddle::platform::is_gpu_place(self);
           })
      .def("is_cpu", [](const paddle::platform::Place& self) {
        return paddle::platform::is_cpu_place(self);
      });

  py::class_<pd::Tensor>(m, "Tensor", py::buffer_protocol())
      .def("get_place", &pd::Tensor::place)
      .def_buffer([](pd::Tensor& self) -> py::buffer_info {
        PADDLE_ENFORCE(paddle::platform::is_cpu_place(self.place()),
                       "Only CPU tensor can cast to numpy array");
        return CastToPyBuffer(self);
      })
      .def("get_dims",
           [](const pd::Tensor& self) { return pd::vectorize(self.dims()); })
      .def("set_dims",
           [](pd::Tensor& self, const std::vector<int>& dim) {
             self.set_dims(pd::make_ddim(dim));
           })
      .def("alloc_float",
           [](pd::Tensor& self) {
             self.mutable_data<float>(paddle::platform::CPUPlace());
           })
      .def("alloc_int",
           [](pd::Tensor& self) {
             self.mutable_data<int>(paddle::platform::CPUPlace());
           })
      .def("set", PyTensorSet<float>)
      .def("set", PyTensorSet<int>);

166 167 168 169 170 171 172 173 174 175
  py::class_<pd::Variable>(m, "Variable", R"DOC(Variable Class.

All parameter, weight, gradient are variables in Paddle.
)DOC")
      .def("is_int", [](const pd::Variable& var) { return var.IsType<int>(); })
      .def("set_int",
           [](pd::Variable& var, int val) -> void {
             *var.GetMutable<int>() = val;
           })
      .def("get_int",
Y
Yu Yang 已提交
176 177 178 179 180 181
           [](const pd::Variable& var) -> int { return var.Get<int>(); })
      .def("get_tensor",
           [](pd::Variable& self) -> pd::Tensor* {
             return self.GetMutable<pd::Tensor>();
           },
           py::return_value_policy::reference);
182 183 184 185 186 187 188 189 190 191

  py::class_<pd::Scope, std::shared_ptr<pd::Scope>>(m, "Scope")
      .def(py::init<const std::shared_ptr<pd::Scope>&>())
      .def("get_var",
           &pd::Scope::GetVariable,
           py::return_value_policy::reference)
      .def("create_var",
           &pd::Scope::CreateVariable,
           py::return_value_policy::reference);

Y
Yu Yang 已提交
192 193
  //! @note: Be careful! PyBind will return std::string as an unicode, not
  //! Python str. If you want a str object, you should cast them in Python.
Y
Yu Yang 已提交
194 195 196 197
  m.def("get_all_op_protos", []() -> std::vector<std::string> {
    auto& protos = pd::OpRegistry::protos();
    std::vector<std::string> ret_values;
    for (auto it = protos.begin(); it != protos.end(); ++it) {
Y
Yu Yang 已提交
198 199
      PADDLE_ENFORCE(it->second.IsInitialized(),
                     "OpProto must all be initialized");
Y
Yu Yang 已提交
200 201 202 203 204 205
      ret_values.emplace_back();
      PADDLE_ENFORCE(it->second.SerializeToString(&ret_values.back()),
                     "Serialize OpProto Error. This could be a bug of Paddle.");
    }
    return ret_values;
  });
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
  m.def_submodule(
       "var_names",
       "The module will return special predefined variable name in Paddle")
      .def("empty", pd::OperatorBase::EMPTY_VAR_NAME)
      .def("temp", pd::OperatorBase::TMP_VAR_NAME);

  py::class_<pd::OperatorBase, pd::OperatorPtr>(m, "Operator")
      .def("__str__", &pd::OperatorBase::DebugString)
      .def_static("create", [](const std::string& protobin) {
        pd::OpDesc desc;
        PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
                       "Cannot parse user input to OpDesc");
        PADDLE_ENFORCE(desc.IsInitialized(),
                       "User OpDesc is not initialized, reason %s",
                       desc.InitializationErrorString());
        return pd::OpRegistry::CreateOp(desc);
      });
Y
Yu Yang 已提交
223

224
  return m.ptr();
L
Luo Tao 已提交
225
}