pooling.py 45.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from ...fluid.dygraph import layers
from ...fluid.layer_helper import LayerHelper
from .. import functional as F

__all__ = [
C
cnn 已提交
20 21 22 23 24 25 26 27 28 29 30 31
    'AvgPool1D',
    'AvgPool2D',
    'AvgPool3D',
    'MaxPool1D',
    'MaxPool2D',
    'MaxPool3D',
    'AdaptiveAvgPool1D',
    'AdaptiveAvgPool2D',
    'AdaptiveAvgPool3D',
    'AdaptiveMaxPool1D',
    'AdaptiveMaxPool2D',
    'AdaptiveMaxPool3D',
32 33 34
]


C
cnn 已提交
35
class AvgPool1D(layers.Layer):
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
    """
    This operation applies a 1D average pooling over an input signal composed
    of several input planes, based on the input, output_size, return_indices parameters.
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:

    ..  math::

       Output(N_i, C_i, l) &= mean(Input[N_i, C_i, stride \times l:stride \times l+k])


    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
54
            it must contain an integer.
55
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
56 57 58 59 60 61 62 63
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
64
        count_include_pad (bool): Whether to exclude padding points in average pooling
65
                          mode, default is `True`.
66
        ceil_mode (bool): ${ceil_mode_comment}Whether to use the ceil function to calculate output height and width.
67
            If it is set to False, the floor function will be used. The default value is False.
68 69 70 71 72 73 74 75 76 77 78
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Returns:
        None.

    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
79
        ShapeError: If the input is not a 3-D tensor.
80 81 82
        ShapeError: If the output's shape calculated is not greater than 0.


83 84 85 86
    Shape:
        - inpuut: 3-D tensor.
        - output: 3-D tensor

87 88 89
    Examples:

        .. code-block:: python
90

91 92 93 94 95
          import paddle
          import paddle.nn as nn
          paddle.disable_static()

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
96 97
          AvgPool1D = nn.AvgPool1D(kernel_size=2, stride=2, padding=0)
          pool_out = AvgPool1D(data)
98 99 100 101 102 103 104 105 106 107 108
          # pool_out shape: [1, 3, 16]

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 count_include_pad=True,
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
109
        super(AvgPool1D, self).__init__()
110 111 112 113 114 115 116 117 118 119 120 121 122
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
        self.count_include_pad = count_include_pad
        self.name = name

    def forward(self, x):
        out = F.avg_pool1d(x, self.kernel_size, self.stride, self.padding,
                           self.count_include_pad, self.ceil_mode, self.name)
        return out


C
cnn 已提交
123
class AvgPool2D(layers.Layer):
124
    """
125 126 127 128
    This operation applies 2D average pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.
129

130 131 132 133 134
    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize
135

136 137 138 139 140 141
      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
           out(N_i, C_j, h, w)  = \frac{1}{ksize[0] * ksize[1]} \sum_{m=0}^{ksize[0]-1} \sum_{n=0}^{ksize[1]-1}
                               input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)
           $$
142 143

    Args:
144 145 146
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
147
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
            Otherwise, the pool stride size will be a square of an int.

        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
        count_include_pad (bool): Whether to exclude padding points in average pooling
                          mode, default is `true`.
        divisor_override (float): if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
165 166 167 168
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

169 170 171
    Shape:
        - x: 4-D tensor.
        - out: 2-D tensor
172

173
    Returns: None.
174 175 176 177 178 179
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
    Examples:
        .. code-block:: python
180

181 182
          import paddle
          import paddle.nn as nn
183
          import numpy as np
184 185
          paddle.disable_static()

186 187
          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
188
          AvgPool2D = nn.AvgPool2D(kernel_size=2,
189 190 191
                                stride=2, padding=0)
          output = AvgPoo2d(input)
          # output.shape [1, 3, 16, 16]
192 193 194 195 196 197 198 199

    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 ceil_mode=False,
200 201 202
                 count_include_pad=True,
                 divisor_override=None,
                 data_format="NCHW",
203
                 name=None):
C
cnn 已提交
204
        super(AvgPool2D, self).__init__()
205
        self.ksize = kernel_size
206 207 208
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
209 210 211
        self.count_include_pad = count_include_pad
        self.divisor = divisor_override
        self.data_format = data_format
212 213
        self.name = name

214 215 216 217 218 219 220 221 222 223 224
    def forward(self, x):
        return F.avg_pool2d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            count_include_pad=self.count_include_pad,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
225 226


C
cnn 已提交
227
class AvgPool3D(layers.Layer):
228
    """
229 230 231 232
    This operation applies 3D max pooling over input features based on the input,
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
233 234

    Args:
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size
            is a tuple or list, it must contain three integers,
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
            Otherwise, the pool kernel size will be the cube of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
        count_include_pad (bool): Whether to exclude padding points in average pooling
                          mode, default is True.
        divisor_override (int|float) if specified, it will be used as divisor, otherwise kernel_size will be used. Default None.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
256 257 258 259
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

260
    Returns: None.
261
    Raises:
262 263 264 265 266 267 268
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.
269 270 271

    Examples:
        .. code-block:: python
272

273 274
          import paddle
          import paddle.nn as nn
275
          import numpy as np
276 277
          paddle.disable_static()

278 279
          # avg pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
280
          AvgPool3D = nn.AvgPool3D(kernel_size=2,
281
                                   stride=2, padding=0)
C
cnn 已提交
282
          output = AvgPool3D(input)
283 284
          # output.shape [1, 2, 3, 16, 16]

285 286
    """

287 288 289 290 291 292 293 294 295
    def __init__(self,
                 kernel_size,
                 stride,
                 padding=0,
                 ceil_mode=False,
                 count_include_pad=True,
                 divisor_override=None,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
296
        super(AvgPool3D, self).__init__()
297 298 299 300 301 302 303
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
        self.count_include_pad = count_include_pad
        self.divisor = divisor_override
        self.data_format = data_format
304 305
        self.name = name

306 307 308 309 310 311 312 313 314 315 316
    def forward(self, x):
        return F.avg_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            ceil_mode=self.ceil_mode,
            count_include_pad=self.count_include_pad,
            divisor_override=self.divisor,
            data_format=self.data_format,
            name=self.name)
317 318


C
cnn 已提交
319
class MaxPool1D(layers.Layer):
320
    """
321 322
    Applies a 1D max pooling over an input signal composed of several input planes based
    on the input, output_size, return_indices parameters.
323 324 325
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.

326 327 328
    The output value of the layer with input size (N, C, L),
    output (N, C, L_{out}) and kernel_size k can be precisely described as
    For average pool1d:
329 330 331

    ..  math::

332
       Output(N_i, C_i, l) &=  max(Input[N_i, C_i, stride \times l:stride \times l+k])}
333 334

    Args:
335 336 337 338 339 340 341 342 343 344 345 346 347 348
       kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain an integer.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain an integer.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An integer, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 1, which means the feature map is zero padded by the size of `padding[0]` on every sides.
            4. A list[int] or tuple(int) whose length is 2. It has the form [pad_before, pad_after].
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        return_indices (bool): Whether return the max indices along with the outputs. default is `False`.
        ceil_mode (bool): Whether to use the ceil function to calculate output height and width. False is the default.
            If it is set to False, the floor function will be used. Default False.
349 350 351 352 353 354 355
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
356 357 358 359 360 361 362 363 364 365
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ValueError: If `padding` is a list or tuple but its length greater than 1.
        ShapeError: If the input is not a 3-D.
        ShapeError: If the output's shape calculated is not greater than 0.


    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.
366 367

    Examples:
368

369 370
        .. code-block:: python

371
          import paddle
372 373 374 375
          import paddle.nn as nn
          paddle.disable_static()

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
376 377
          MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0)
          pool_out = MaxPool1D(data)
378 379
          # pool_out shape: [1, 3, 16]

C
cnn 已提交
380 381
          MaxPool1D = nn.MaxPool1D(kernel_size=2, stride=2, padding=0, return_indices=True)
          pool_out, indices = MaxPool1D(data)
382 383 384 385
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

386 387 388 389 390 391 392
    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
                 return_indices=False,
                 ceil_mode=False,
                 name=None):
C
cnn 已提交
393
        super(MaxPool1D, self).__init__()
394 395 396 397
        self.kernel_size = kernel_size
        self.stride = stride
        self.padding = padding
        self.ceil_mode = ceil_mode
398 399 400 401
        self.return_indices = return_indices
        self.name = name

    def forward(self, input):
402 403 404
        out = F.max_pool1d(input, self.kernel_size, self.stride, self.padding,
                           self.return_indices, self.ceil_mode, self.name)
        return out
405 406


C
cnn 已提交
407
class MaxPool2D(layers.Layer):
408
    """
409
    This operation applies 2D max pooling over input feature based on the input,
410 411 412 413 414 415 416 417 418 419 420 421 422
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
    in NCHW format, where N is batch size, C is the number of channels,
    H is the height of the feature, and W is the width of the feature.

    Example:
      Input:
           X shape: $(N, C, H_{in}, W_{in})$
      Attr:
           kernel_size: ksize

      Output:
           Out shape: $(N, C, H_{out}, W_{out})$
           $$
423 424 425
           out(N_i, C_j, h, w) ={} & \max_{m=0, \ldots, ksize[0] -1} \max_{n=0, \ldots, ksize[1]-1} \\
                                    & \text{input}(N_i, C_j, \text{stride[0]} \times h + m,
                                                   \text{stride[1]} \times w + n)
426 427 428 429 430 431 432 433
           $$

    Args:
        kernel_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two integers, (pool_size_Height, pool_size_Width).
            Otherwise, the pool kernel size will be a square of an int.
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain two integers, (pool_stride_Height, pool_stride_Width).
434 435 436 437 438 439 440 441
            Otherwise, the pool stride size will be a square of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 2, [pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 4. [pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
442
        ceil_mode (bool): when True, will use `ceil` instead of `floor` to compute the output shape
443
        return_indices (bool): Whether to return the max indices along with the outputs.
444 445 446
        data_format (string): The data format of the input and output data. An optional string from: `"NCHW"`, `"NDHW"`.
                        The default is `"NCHW"`. When it is `"NCHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_height, input_width]`.
447 448 449
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
450

451
    Returns: None
452 453 454 455
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
456 457 458 459 460

    Shape:
        - x: 4-D tensor.
        - out: 4-D tensor.

461 462
    Examples:
        .. code-block:: python
463

464 465 466 467 468 469 470
          import paddle
          import paddle.nn as nn
          import numpy as np
          paddle.disable_static()

          # max pool2d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
471
          MaxPool2D = nn.MaxPool2D(kernel_size=2,
472
                                   stride=2, padding=0)
C
cnn 已提交
473
          output = MaxPool2D(input)
474 475
          # output.shape [1, 3, 16, 16]

476
          # for return_indices=True
C
cnn 已提交
477 478
          MaxPool2D = nn.MaxPool2D(kernel_size=2,stride=2, padding=0, return_indices=True)
          output, max_indices = MaxPool2D(input)
479
          # output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],
480 481 482 483 484 485
    """

    def __init__(self,
                 kernel_size,
                 stride=None,
                 padding=0,
486
                 return_indices=False,
487 488 489
                 ceil_mode=False,
                 data_format="NCHW",
                 name=None):
C
cnn 已提交
490
        super(MaxPool2D, self).__init__()
491 492 493
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
494
        self.return_indices = return_indices
495 496 497 498 499
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
500
        return F.max_pool2d(
501 502 503 504
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
505
            return_indices=self.return_indices,
506 507 508 509
            data_format=self.data_format,
            name=self.name)


C
cnn 已提交
510
class MaxPool3D(layers.Layer):
511
    """
512
    This operation applies 3D max pooling over input features based on the input,
513
    and kernel_size, stride, padding parameters. Input(X) and Output(Out) are
514 515
    in NCDHW format, where N is batch size, C is the number of channels,
    H is the height of the feature,  D is the depth of the feature, and W is the width of the feature.
516 517

    Args:
518
        kernel_size (int|list|tuple): The pool kernel size. If the kernel size
519
            is a tuple or list, it must contain three integers,
520
            (kernel_size_Depth, kernel_size_Height, kernel_size_Width).
521
            Otherwise, the pool kernel size will be the cube of an int.
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536
        stride (int|list|tuple): The pool stride size. If pool stride size is a tuple or list,
            it must contain three integers, [stride_Depth, stride_Height, stride_Width).
            Otherwise, the pool stride size will be a cube of an int.
        padding (string|int|list|tuple): The padding size. Padding could be in one of the following forms.
            1. A string in ['valid', 'same'].
            2. An int, which means the feature map is zero padded by size of `padding` on every sides.
            3. A list[int] or tuple(int) whose length is 3, [pad_depth, pad_height, pad_weight] whose value means the padding size of each dimension.
            4. A list[int] or tuple(int) whose length is 6. [pad_depth_front, pad_depth_back, pad_height_top, pad_height_bottom, pad_width_left, pad_width_right] whose value means the padding size of each side.
            5. A list or tuple of pairs of integers. It has the form [[pad_before, pad_after], [pad_before, pad_after], ...]. Note that, the batch dimension and channel dimension should be [0,0] or (0,0).
            The default value is 0.
        ceil_mode (bool): ${ceil_mode_comment}
        return_indices (bool): Whether to return the max indices along with the outputs.
        data_format (string): The data format of the input and output data. An optional string from: `"NCDHW"`, `"NDHWC"`.
                        The default is `"NCDHW"`. When it is `"NCDHW"`, the data is stored in the order of:
                        `[batch_size, input_channels, input_depth, input_height, input_width]`.
537 538 539 540 541 542 543 544 545 546
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.


    Returns:None.
    Raises:
        ValueError: If `padding` is a string, but not "SAME" or "VALID".
        ValueError: If `padding` is "VALID", but `ceil_mode` is True.
        ShapeError: If the output's shape calculated is not greater than 0.
547 548 549 550 551

    Shape:
        - x: 5-D tensor.
        - out: 5-D tensor.

552 553
    Examples:
        .. code-block:: python
554

555 556 557 558 559 560 561
          import paddle
          import paddle.nn as nn
          import numpy as np
          paddle.disable_static()

          # max pool3d
          input = paddle.to_tensor(np.random.uniform(-1, 1, [1, 2, 3, 32, 32]).astype(np.float32))
C
cnn 已提交
562
          MaxPool3D = nn.MaxPool3D(kernel_size=2,
563
                                   stride=2, padding=0)
C
cnn 已提交
564
          output = MaxPool3D(input)
565 566 567
          # output.shape [1, 2, 3, 16, 16]

          # for return_indices=True
C
cnn 已提交
568 569
          MaxPool3D = nn.MaxPool3D(kernel_size=2,stride=2, padding=0, return_indices=True)
          output, max_indices = MaxPool3D(input)
570 571 572 573 574 575 576 577 578 579 580
          # output.shape [1, 2, 3, 16, 16], max_indices.shape [1, 2, 3, 16, 16],
    """

    def __init__(self,
                 kernel_size,
                 stride,
                 padding,
                 return_indices=False,
                 ceil_mode=False,
                 data_format="NCDHW",
                 name=None):
C
cnn 已提交
581
        super(MaxPool3D, self).__init__()
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600
        self.ksize = kernel_size
        self.stride = stride
        self.padding = padding
        self.return_indices = return_indices
        self.ceil_mode = ceil_mode
        self.data_format = data_format
        self.name = name

    def forward(self, x):
        return F.max_pool3d(
            x,
            kernel_size=self.ksize,
            stride=self.stride,
            padding=self.padding,
            return_indices=self.return_indices,
            data_format=self.data_format,
            name=self.name)


C
cnn 已提交
601
class AdaptiveAvgPool1D(layers.Layer):
602
    """
603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618

    This operation applies a 1D adaptive average pooling over an input signal composed
    of several input planes, based on the input, output_size, return_indices parameters.
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For average adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

       Output(i) &= \\frac{sum(Input[lstart:lend])}{(lstart - lend)}
619 620

    Args:
621
        output_size (int): The target output size. It must be an integer.
622 623 624 625
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

626 627 628
    Returns:
        None.

629
    Raises:
630
        ValueError: 'output_size' should be an integer.
631 632 633 634 635

    Shape:
        - x: 3-D tensor.
        - out: 3-D tensor.

636 637
    Examples:
        .. code-block:: python
638 639 640 641 642 643 644 645 646 647 648 649 650

          # average adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = sum(input[:, :, lstart: lend])/(lstart - lend)
          #
651 652 653 654
          import paddle
          import paddle.nn as nn
          paddle.disable_static()

655
          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
656 657
          AdaptiveAvgPool1D = nn.AdaptiveAvgPool1D(output_size=16)
          pool_out = AdaptiveAvgPool1D(data)
658
          # pool_out shape: [1, 3, 16]
659 660
    """

661
    def __init__(self, output_size, name=None):
C
cnn 已提交
662
        super(AdaptiveAvgPool1D, self).__init__()
663
        self.output_size = output_size
664 665
        self.name = name

666 667 668 669
    def forward(self, input):
        return F.adaptive_avg_pool1d(input, self.output_size, self.name)


C
cnn 已提交
670
class AdaptiveAvgPool2D(layers.Layer):
671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706
    """

    This operation applies 2D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool2d:

    ..  math::

       hstart &= floor(i * H_{in} / H_{out})

       hend &= ceil((i + 1) * H_{in} / H_{out})

       wstart &= floor(j * W_{in} / W_{out})

       wend &= ceil((j + 1) * W_{in} / W_{out})

       Output(i ,j) &= \\frac{sum(Input[hstart:hend, wstart:wend])}{(hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain two element, (H, W). H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCHW", "NHWC". The default is "NCHW". When it is "NCHW", the data is stored in
            the order of: [batch_size, input_channels, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.

    Shape:
        x (Tensor): The input tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool2d operator, which is a 4-D tensor. The data type is same as input x.

    Returns:
C
cnn 已提交
707
        A callable object of AdaptiveAvgPool2D.
708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732

    Examples:
        .. code-block:: python

            # adaptive avg pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = avg(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 32, 32]
C
cnn 已提交
733
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool2D(output_size=3)
734 735 736 737 738
            pool_out = adaptive_avg_pool(x = x)
            # pool_out.shape is [2, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCHW", name=None):
C
cnn 已提交
739
        super(AdaptiveAvgPool2D, self).__init__()
740 741 742 743 744 745 746 747 748 749 750 751
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool2d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


C
cnn 已提交
752
class AdaptiveAvgPool3D(layers.Layer):
753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791
    """

    This operation applies 3D adaptive avg pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size.

    For avg adaptive pool3d:

    ..  math::

      dstart &= floor(i * D_{in} / D_{out})

      dend &= ceil((i + 1) * D_{in} / D_{out})

      hstart &= floor(j * H_{in} / H_{out})

      hend &= ceil((j + 1) * H_{in} / H_{out})

      wstart &= floor(k * W_{in} / W_{out})

      wend &= ceil((k + 1) * W_{in} / W_{out})

      Output(i ,j, k) &= \\frac{sum(Input[dstart:dend, hstart:hend, wstart:wend])}{(dend - dstart) * (hend - hstart) * (wend - wstart)}


    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
            it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means
            the size will be the same as that of the input.
        data_format (str): The data format of the input and output data. An optional string
            from: "NCDHW", "NDHWC". The default is "NCDHW". When it is "NCDHW", the data is stored in
            the order of: [batch_size, input_channels, input_depth, input_height, input_width].
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive avg pool3d operator, which is a 5-D tensor. The data type is same as input x.

    Returns:
C
cnn 已提交
792
        A callable object of AdaptiveAvgPool3D.
793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820

    Examples:
        .. code-block:: python

            # adaptive avg pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive avg pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     avg(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
            # x.shape is [2, 3, 8, 32, 32]
C
cnn 已提交
821
            adaptive_avg_pool = paddle.nn.AdaptiveAvgPool3D(output_size=3)
822 823 824 825 826
            pool_out = adaptive_avg_pool(x = x)
            # pool_out = [2, 3, 3, 3, 3]
    """

    def __init__(self, output_size, data_format="NCDHW", name=None):
C
cnn 已提交
827
        super(AdaptiveAvgPool3D, self).__init__()
828 829 830 831 832 833 834 835 836 837 838 839
        self._output_size = output_size
        self._data_format = data_format
        self._name = name

    def forward(self, x):
        return F.adaptive_avg_pool3d(
            x,
            output_size=self._output_size,
            data_format=self._data_format,
            name=self._name)


C
cnn 已提交
840
class AdaptiveMaxPool1D(layers.Layer):
841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856
    """

    This operation applies a 1D adaptive max pooling over an input signal composed
    of several input planes, based on the input, output_size, return_indices parameters.
    Input(X) and output(Out) are in NCL format, where N is batch
    size, C is the number of channels, L is the length of the feature.
    The output tensor shape will be [N, C, output_size].

    For max adaptive pool1d:

    ..  math::

       lstart &= floor(i * L_{in} / L_{out})

       lend &= ceil((i + 1) * L_{in} / L_{out})

D
Double_V 已提交
857
       Output(i) &= max(Input[lstart:lend])
858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896

    Args:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list,
             it must contain one int.
        return_indices (bool): If true, the index of max pooling point will be returned along
            with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Returns:
        None.

    Raises:
        ValueError: 'pool_size' should be a integer or list or tuple with length as 1.

    Shape:
        x (Tensor): The input tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool1d operator, which is a 3-D tensor. The data type is same as input x.

    Examples:
        .. code-block:: python

          # max adaptive pool1d
          # suppose input data in shape of [N, C, L], `output_size` is m or [m],
          # output shape is [N, C, m], adaptive pool divide L dimension
          # of input data into m grids averagely and performs poolings in each
          # grid to get output.
          # adaptive max pool performs calculations as follow:
          #
          #     for i in range(m):
          #         lstart = floor(i * L / m)
          #         lend = ceil((i + 1) * L / m)
          #         output[:, :, i] = max(input[:, :, lstart: lend])
          #
                    import paddle
          import paddle.nn as nn
          paddle.disable_static()

          data = paddle.to_tensor(np.random.uniform(-1, 1, [1, 3, 32]).astype(np.float32))
C
cnn 已提交
897 898
          AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16)
          pool_out = AdaptiveMaxPool1D(data)
899 900 901
          # pool_out shape: [1, 3, 16]

          # for return_indices = true
C
cnn 已提交
902 903
          AdaptiveMaxPool1D = nn.AdaptiveMaxPool1D(output_size=16, return_indices=True)
          pool_out, indices = AdaptiveMaxPool1D(data)
904 905 906 907 908
          # pool_out shape: [1, 3, 16], indices shape: [1, 3, 16]

    """

    def __init__(self, output_size, return_indices=False, name=None):
C
cnn 已提交
909
        super(AdaptiveMaxPool1D, self).__init__()
910 911 912 913 914 915 916 917 918
        self.output_size = output_size
        self.return_indices = return_indices
        self.name = name

    def forward(self, input):
        return F.adaptive_max_pool1d(input, self.output_size,
                                     self.return_indices, self.name)


C
cnn 已提交
919
class AdaptiveMaxPool2D(layers.Layer):
920 921 922
    """
    This operation applies 2D adaptive max pooling on input tensor. The h and w dimensions
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
923

924
    For adaptive max pool2d:
925

926
    ..  math::
927

928 929 930 931 932 933 934 935 936 937 938 939 940 941
       hstart &= floor(i * H_{in} / H_{out})
       hend &= ceil((i + 1) * H_{in} / H_{out})
       wstart &= floor(j * W_{in} / W_{out})
       wend &= ceil((j + 1) * W_{in} / W_{out})
       Output(i ,j) &= max(Input[hstart:hend, wstart:wend])
    Parameters:
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain two element, (H, W). H and W can be either a int, or None which means the size will be the same as that of the input.
        return_indices (bool): If true, the index of max pooling point will be returned along with outputs. It cannot be set in average pooling type. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool2d operator, which is a 4-D tensor. The data type is same as input x.
D
Double_V 已提交
942

943
    Returns:
C
cnn 已提交
944
        A callable object of AdaptiveMaxPool2D.
945 946
    Examples:
        .. code-block:: python
947

948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967
            # adaptive max pool2d
            # suppose input data in shape of [N, C, H, W], `output_size` is [m, n],
            # output shape is [N, C, m, n], adaptive pool divide H and W dimensions
            # of input data into m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(m):
            #         for j in range(n):
            #             hstart = floor(i * H / m)
            #             hend = ceil((i + 1) * H / m)
            #             wstart = floor(i * W / n)
            #             wend = ceil((i + 1) * W / n)
            #             output[:, :, i, j] = max(input[:, :, hstart: hend, wstart: wend])
            #
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
968
            adaptive_max_pool = paddle.nn.AdaptiveMaxPool2D(output_size=3, return_indices=True)
969 970 971 972
            pool_out, indices = adaptive_max_pool(x = x)
    """

    def __init__(self, output_size, return_indices=False, name=None):
C
cnn 已提交
973
        super(AdaptiveMaxPool2D, self).__init__()
974 975 976 977 978 979 980 981 982 983 984 985
        self._output_size = output_size
        self._return_indices = return_indices
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool2d(
            x,
            output_size=self._output_size,
            return_indices=self._return_indices,
            name=self._name)


C
cnn 已提交
986
class AdaptiveMaxPool3D(layers.Layer):
987
    """
988
    This operation applies 3D adaptive max pooling on input tensor. The h and w dimensions
989
    of the output tensor are determined by the parameter output_size. The difference between adaptive pooling and pooling is adaptive one focus on the output size.
990

991
    For adaptive max pool3d:
992

993
    ..  math::
994

995 996 997 998 999 1000 1001
      dstart &= floor(i * D_{in} / D_{out})
      dend &= ceil((i + 1) * D_{in} / D_{out})
      hstart &= floor(j * H_{in} / H_{out})
      hend &= ceil((j + 1) * H_{in} / H_{out})
      wstart &= floor(k * W_{in} / W_{out})
      wend &= ceil((k + 1) * W_{in} / W_{out})
      Output(i ,j, k) &= max(Input[dstart:dend, hstart:hend, wstart:wend])
1002

1003
    Parameters:
1004
        output_size (int|list|tuple): The pool kernel size. If pool kernel size is a tuple or list, it must contain three elements, (D, H, W). D, H and W can be either a int, or None which means the size will be the same as that of the input.
1005 1006 1007 1008 1009 1010 1011 1012
        return_indices (bool): If true, the index of max pooling point will be returned along with outputs. Default False.
        name(str, optional): For detailed information, please refer
                             to :ref:`api_guide_Name`. Usually name is no need to set and
                             None by default.
    Shape:
        x (Tensor): The input tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type can be float32, float64.
        output (Tensor): The output tensor of adaptive max pool3d operator, which is a 5-D tensor. The data type is same as input x.
    Returns:
C
cnn 已提交
1013
        A callable object of AdaptiveMaxPool3D.
1014 1015
    Examples:
        .. code-block:: python
1016

1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039
            # adaptive max pool3d
            # suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
            # output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
            # of input data into l * m * n grids averagely and performs poolings in each
            # grid to get output.
            # adaptive max pool performs calculations as follow:
            #
            #     for i in range(l):
            #         for j in range(m):
            #             for k in range(n):
            #                 dstart = floor(i * D / l)
            #                 dend = ceil((i + 1) * D / l)
            #                 hstart = floor(j * H / m)
            #                 hend = ceil((j + 1) * H / m)
            #                 wstart = floor(k * W / n)
            #                 wend = ceil((k + 1) * W / n)
            #                 output[:, :, i, j, k] =
            #                     max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
            import paddle
            import numpy as np
            paddle.disable_static()
            input_data = np.random.rand(2, 3, 8, 32, 32)
            x = paddle.to_tensor(input_data)
C
cnn 已提交
1040
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
1041 1042
            out = pool(x)
            # out shape: [2, 3, 4, 4, 4]
C
cnn 已提交
1043
            pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_indices=True)
1044
            out, indices = pool(x)
1045
            # out shape: [2, 3, 4, 4, 4], indices shape: [2, 3, 4, 4, 4]
D
Double_V 已提交
1046

1047 1048 1049
    """

    def __init__(self, output_size, return_indices=False, name=None):
C
cnn 已提交
1050
        super(AdaptiveMaxPool3D, self).__init__()
1051 1052 1053 1054 1055 1056 1057 1058 1059 1060
        self._output_size = output_size
        self._return_indices = return_indices
        self._name = name

    def forward(self, x):
        return F.adaptive_max_pool3d(
            x,
            output_size=self._output_size,
            return_indices=self._return_indices,
            name=self._name)